Cargando…
Application of Advanced Machine Learning Approaches to Predict the Compressive Strength of Concrete Containing Supplementary Cementitious Materials
The casting and testing specimens for determining the mechanical properties of concrete is a time-consuming activity. This study employed supervised machine learning techniques, bagging, AdaBoost, gene expression programming, and decision tree to estimate the compressive strength of concrete contain...
Autores principales: | Ahmad, Waqas, Ahmad, Ayaz, Ostrowski, Krzysztof Adam, Aslam, Fahid, Joyklad, Panuwat, Zajdel, Paulina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8510219/ https://www.ncbi.nlm.nih.gov/pubmed/34640160 http://dx.doi.org/10.3390/ma14195762 |
Ejemplares similares
-
Prediction of Geopolymer Concrete Compressive Strength Using Novel Machine Learning Algorithms
por: Ahmad, Ayaz, et al.
Publicado: (2021) -
Computation of High-Performance Concrete Compressive Strength Using Standalone and Ensembled Machine Learning Techniques
por: Xu, Yue, et al.
Publicado: (2021) -
Predicting the Mechanical Properties of RCA-Based Concrete Using Supervised Machine Learning Algorithms
por: Shang, Meijun, et al.
Publicado: (2022) -
Predicting the Compressive Strength of Concrete Containing Binary Supplementary Cementitious Material Using Machine Learning Approach
por: Moradi, Nozar, et al.
Publicado: (2022) -
Prediction of Compressive Strength of Fly Ash Based Concrete Using Individual and Ensemble Algorithm
por: Ahmad, Ayaz, et al.
Publicado: (2021)