Cargando…
Bias and fairness assessment of a natural language processing opioid misuse classifier: detection and mitigation of electronic health record data disadvantages across racial subgroups
OBJECTIVES: To assess fairness and bias of a previously validated machine learning opioid misuse classifier. MATERIALS & METHODS: Two experiments were conducted with the classifier’s original (n = 1000) and external validation (n = 53 974) datasets from 2 health systems. Bias was assessed via te...
Autores principales: | Thompson, Hale M, Sharma, Brihat, Bhalla, Sameer, Boley, Randy, McCluskey, Connor, Dligach, Dmitriy, Churpek, Matthew M, Karnik, Niranjan S, Afshar, Majid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8510285/ https://www.ncbi.nlm.nih.gov/pubmed/34383925 http://dx.doi.org/10.1093/jamia/ocab148 |
Ejemplares similares
-
External validation of an opioid misuse machine learning classifier in hospitalized adult patients
por: Afshar, Majid, et al.
Publicado: (2021) -
Publicly available machine learning models for identifying opioid misuse from the clinical notes of hospitalized patients
por: Sharma, Brihat, et al.
Publicado: (2020) -
Development and multimodal validation of a substance misuse algorithm for referral to treatment using artificial intelligence (SMART-AI): a retrospective deep learning study
por: Afshar, Majid, et al.
Publicado: (2022) -
Subtypes in patients with opioid misuse: A prognostic enrichment strategy using electronic health record data in hospitalized patients
por: Afshar, Majid, et al.
Publicado: (2019) -
Investigating Unhealthy Alcohol Use As an Independent Risk Factor for Increased COVID-19 Disease Severity: Observational Cross-sectional Study
por: Bhalla, Sameer, et al.
Publicado: (2021)