Cargando…
Developing machine learning models to personalize care levels among emergency room patients for hospital admission
OBJECTIVE: To develop prediction models for intensive care unit (ICU) vs non-ICU level-of-care need within 24 hours of inpatient admission for emergency department (ED) patients using electronic health record data. MATERIALS AND METHODS: Using records of 41 654 ED visits to a tertiary academic cente...
Autores principales: | Nguyen, Minh, Corbin, Conor K, Eulalio, Tiffany, Ostberg, Nicolai P, Machiraju, Gautam, Marafino, Ben J, Baiocchi, Michael, Rose, Christian, Chen, Jonathan H |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8510323/ https://www.ncbi.nlm.nih.gov/pubmed/34402507 http://dx.doi.org/10.1093/jamia/ocab118 |
Ejemplares similares
-
Machine learning for initial insulin estimation in hospitalized patients
por: Nguyen, Minh, et al.
Publicado: (2021) -
DEPLOYR: a technical framework for deploying custom real-time machine learning models into the electronic medical record
por: Corbin, Conor K, et al.
Publicado: (2023) -
Personalized antibiograms for machine learning driven antibiotic selection
por: Corbin, Conor K., et al.
Publicado: (2022) -
ODNA: identification of organellar DNA by machine learning
por: Martin, Roman, et al.
Publicado: (2023) -
Machine Learning Applied to Electronic Health Records: Identification of Chemotherapy Patients at High Risk for Preventable Emergency Department Visits and Hospital Admissions
por: Peterson, Dylan J., et al.
Publicado: (2021)