Cargando…

Comparison of Properties of 3D-Printed Mortar in Air vs. Underwater

Research and technological advancements in 3D concrete printing (3DCP) have led to the idea of applying it to offshore construction. The effect of gravity is reduced underwater, which can have a positive effect on 3DCP. For basic verification of this idea, this study printed and additively manufactu...

Descripción completa

Detalles Bibliográficos
Autores principales: Woo, Seong-Jin, Yang, Jun-Mo, Lee, Hojae, Kwon, Hong-Kyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8510387/
https://www.ncbi.nlm.nih.gov/pubmed/34640284
http://dx.doi.org/10.3390/ma14195888
Descripción
Sumario:Research and technological advancements in 3D concrete printing (3DCP) have led to the idea of applying it to offshore construction. The effect of gravity is reduced underwater, which can have a positive effect on 3DCP. For basic verification of this idea, this study printed and additively manufactured specimens with the same mortar mixture in air and underwater and evaluated properties in the fresh state and the hardened state. The mechanical properties were evaluated using the specimens produced by direct casting to the mold and specimens produced by extracting from the additive part through coring and cutting. The results of the experiment show that underwater 3D printing required a greater amount of printing output than in-air 3D printing for a good print quality, and buildability was improved underwater compared to that in air. In the case of the specimen layered underwater, the density and compressive strength decreased compared to the specimen layered in air. Because there are almost no effects of moisture evaporation and bleeding in water, the interlayer bond strength of the specimen printed underwater was somewhat larger than that printed in air, while there was no effect of the deposition time interval underwater.