Cargando…
The Amine Functionalized Sugarcane Bagasse Biocomposites as Magnetically Adsorbent for Contaminants Removal in Aqueous Solution
The method of solvothermal by one-step operation has been performed to synthesize of magnetic amine-functionalized sugarcane bagasse biocomposites (SB-MH). The obtained SB-MH contains 62.34% of Fe, 17.8 mmol/g of amine, and a magnetic property of 19.46 emu/g. The biocomposite surface area increased...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8510407/ https://www.ncbi.nlm.nih.gov/pubmed/34641411 http://dx.doi.org/10.3390/molecules26195867 |
Sumario: | The method of solvothermal by one-step operation has been performed to synthesize of magnetic amine-functionalized sugarcane bagasse biocomposites (SB-MH). The obtained SB-MH contains 62.34% of Fe, 17.8 mmol/g of amine, and a magnetic property of 19.46 emu/g. The biocomposite surface area increased significantly from 1.617 to 25.789 m(2)/g after amine functionalization. The optimum condition of SB-MH used for Pb(II) ion removal was achieved at pH 5 for 360 min with adsorption capacity of 203.522 mg/g. The pseudo 2nd order was well-fitted to the model of Pb(II) ion adsorption. Meanwhile, other contaminant parameters number of Chemical Oxygen Demand (COD), Total Suspended Solid (TSS), and dye in wastewater were also remarkably reduced by about 74.4%, 88.0%, and 96.7%, respectively. The reusability of SB-MH with 4th repetitions showed only a slight decrease in performance of 5%. Therefore, the proposed magnetic amine-functionalized sugarcane bagasse biocomposites lead to a very potential adsorbent implemented in high scale due to high surface area, easy separation, stable materials and capability to adsorb contaminants from aqueous solution. |
---|