Cargando…

Ceramic-Based Piezoelectric Material for Energy Harvesting Using Hybrid Excitation

This paper analyzes the energy efficiency of a Micro Fiber Composite (MFC) piezoelectric system. It is based on a smart Lead Zirconate Titanate material that consists of a monolithic PZT (piezoelectric ceramic) wafer, which is a ceramic-based piezoelectric material. An experimental test rig consisti...

Descripción completa

Detalles Bibliográficos
Autores principales: Ambrożkiewicz, Bartłomiej, Czyż, Zbigniew, Karpiński, Paweł, Stączek, Paweł, Litak, Grzegorz, Grabowski, Łukasz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8510421/
https://www.ncbi.nlm.nih.gov/pubmed/34640213
http://dx.doi.org/10.3390/ma14195816
Descripción
Sumario:This paper analyzes the energy efficiency of a Micro Fiber Composite (MFC) piezoelectric system. It is based on a smart Lead Zirconate Titanate material that consists of a monolithic PZT (piezoelectric ceramic) wafer, which is a ceramic-based piezoelectric material. An experimental test rig consisting of a wind tunnel and a developed measurement system was used to conduct the experiment. The developed test rig allowed changing the air velocity around the tested bluff body and the frequency of forced vibrations as well as recording the output voltage signal and linear acceleration of the tested object. The mechanical vibrations and the air flow were used to find the optimal performance of the piezoelectric energy harvesting system. The performance of the proposed piezoelectric wind energy harvester was tested for the same design, but of different masses. The geometry of the hybrid bluff body is a combination of cuboid and cylindrical shapes. The results of testing five bluff bodies for a range of wind tunnel air flow velocities from 4 to 15 m/s with additional vibration excitation frequencies from 0 to 10 Hz are presented. The conducted tests revealed the areas of the highest voltage output under specific excitation conditions that enable supplying low-power sensors with harvested energy.