Cargando…
Experimental Investigation on Dry Routing of CFRP Composite: Temperature, Forces, Tool Wear, and Fine Dust Emission
This article presents the influence of machining conditions on typical process performance indicators, namely cutting force, specific cutting energy, cutting temperature, tool wear, and fine dust emission during dry milling of CFRPs. The main goal is to determine the machining process window for obt...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8510445/ https://www.ncbi.nlm.nih.gov/pubmed/34640092 http://dx.doi.org/10.3390/ma14195697 |
_version_ | 1784582573915111424 |
---|---|
author | Elgnemi, Tarek Songmene, Victor Kouam, Jules Jun, Martin B.G. Samuel, Agnes Marie |
author_facet | Elgnemi, Tarek Songmene, Victor Kouam, Jules Jun, Martin B.G. Samuel, Agnes Marie |
author_sort | Elgnemi, Tarek |
collection | PubMed |
description | This article presents the influence of machining conditions on typical process performance indicators, namely cutting force, specific cutting energy, cutting temperature, tool wear, and fine dust emission during dry milling of CFRPs. The main goal is to determine the machining process window for obtaining quality parts with acceptable tool performance and limited dust emission. For achieving this, the cutting temperature was examined using analytical and empirical models, and systematic cutting experiments were conducted to assess the reliability of the theoretical predictions. A full factorial design was used for the experimental design. The experiments were conducted on a CNC milling machine with cutting speeds of 10,000, 15,000, and 20,000 rpm and feed rates of 2, 4, and 6 µm/tooth. Based on the results, it was ascertained that spindle speed significantly affects the cutting temperature and fine particle emission while cutting force, specific cutting energy, and tool wear are influenced by the feed rate. The optimal conditions for cutting force and tool wear were observed at a cutting speed of 10,000 rpm. The cutting temperature did not exceed the glass transition temperature for the cutting speeds tested and feed rates used. The fine particles emitted ranged from 0.5 to 10 µm aerodynamic diameters with a maximum concentration of 2776.6 particles for those of 0.5 µm diameters. Finally, results of the experimental optimization are presented, and the model is validated. The results obtained may be used to better understand specific phenomena associated with the milling of CFRPs and provide the means to select effective milling parameters to improve the technology and economics of the process. |
format | Online Article Text |
id | pubmed-8510445 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85104452021-10-13 Experimental Investigation on Dry Routing of CFRP Composite: Temperature, Forces, Tool Wear, and Fine Dust Emission Elgnemi, Tarek Songmene, Victor Kouam, Jules Jun, Martin B.G. Samuel, Agnes Marie Materials (Basel) Article This article presents the influence of machining conditions on typical process performance indicators, namely cutting force, specific cutting energy, cutting temperature, tool wear, and fine dust emission during dry milling of CFRPs. The main goal is to determine the machining process window for obtaining quality parts with acceptable tool performance and limited dust emission. For achieving this, the cutting temperature was examined using analytical and empirical models, and systematic cutting experiments were conducted to assess the reliability of the theoretical predictions. A full factorial design was used for the experimental design. The experiments were conducted on a CNC milling machine with cutting speeds of 10,000, 15,000, and 20,000 rpm and feed rates of 2, 4, and 6 µm/tooth. Based on the results, it was ascertained that spindle speed significantly affects the cutting temperature and fine particle emission while cutting force, specific cutting energy, and tool wear are influenced by the feed rate. The optimal conditions for cutting force and tool wear were observed at a cutting speed of 10,000 rpm. The cutting temperature did not exceed the glass transition temperature for the cutting speeds tested and feed rates used. The fine particles emitted ranged from 0.5 to 10 µm aerodynamic diameters with a maximum concentration of 2776.6 particles for those of 0.5 µm diameters. Finally, results of the experimental optimization are presented, and the model is validated. The results obtained may be used to better understand specific phenomena associated with the milling of CFRPs and provide the means to select effective milling parameters to improve the technology and economics of the process. MDPI 2021-09-30 /pmc/articles/PMC8510445/ /pubmed/34640092 http://dx.doi.org/10.3390/ma14195697 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Elgnemi, Tarek Songmene, Victor Kouam, Jules Jun, Martin B.G. Samuel, Agnes Marie Experimental Investigation on Dry Routing of CFRP Composite: Temperature, Forces, Tool Wear, and Fine Dust Emission |
title | Experimental Investigation on Dry Routing of CFRP Composite: Temperature, Forces, Tool Wear, and Fine Dust Emission |
title_full | Experimental Investigation on Dry Routing of CFRP Composite: Temperature, Forces, Tool Wear, and Fine Dust Emission |
title_fullStr | Experimental Investigation on Dry Routing of CFRP Composite: Temperature, Forces, Tool Wear, and Fine Dust Emission |
title_full_unstemmed | Experimental Investigation on Dry Routing of CFRP Composite: Temperature, Forces, Tool Wear, and Fine Dust Emission |
title_short | Experimental Investigation on Dry Routing of CFRP Composite: Temperature, Forces, Tool Wear, and Fine Dust Emission |
title_sort | experimental investigation on dry routing of cfrp composite: temperature, forces, tool wear, and fine dust emission |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8510445/ https://www.ncbi.nlm.nih.gov/pubmed/34640092 http://dx.doi.org/10.3390/ma14195697 |
work_keys_str_mv | AT elgnemitarek experimentalinvestigationondryroutingofcfrpcompositetemperatureforcestoolwearandfinedustemission AT songmenevictor experimentalinvestigationondryroutingofcfrpcompositetemperatureforcestoolwearandfinedustemission AT kouamjules experimentalinvestigationondryroutingofcfrpcompositetemperatureforcestoolwearandfinedustemission AT junmartinbg experimentalinvestigationondryroutingofcfrpcompositetemperatureforcestoolwearandfinedustemission AT samuelagnesmarie experimentalinvestigationondryroutingofcfrpcompositetemperatureforcestoolwearandfinedustemission |