Cargando…
Starch Granule Size and Morphology of Arabidopsis thaliana Starch-Related Mutants Analyzed during Diurnal Rhythm and Development
Transitory starch plays a central role in the life cycle of plants. Many aspects of this important metabolism remain unknown; however, starch granules provide insight into this persistent metabolic process. Therefore, monitoring alterations in starch granules with high temporal resolution provides o...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8510473/ https://www.ncbi.nlm.nih.gov/pubmed/34641402 http://dx.doi.org/10.3390/molecules26195859 |
_version_ | 1784582581299183616 |
---|---|
author | Liu, Qingting Zhou, Yuan Fettke, Joerg |
author_facet | Liu, Qingting Zhou, Yuan Fettke, Joerg |
author_sort | Liu, Qingting |
collection | PubMed |
description | Transitory starch plays a central role in the life cycle of plants. Many aspects of this important metabolism remain unknown; however, starch granules provide insight into this persistent metabolic process. Therefore, monitoring alterations in starch granules with high temporal resolution provides one significant avenue to improve understanding. Here, a previously established method that combines LCSM and safranin-O staining for in vivo imaging of transitory starch granules in leaves of Arabidopsis thaliana was employed to demonstrate, for the first time, the alterations in starch granule size and morphology that occur both throughout the day and during leaf aging. Several starch-related mutants were included, which revealed differences among the generated granules. In ptst2 and sex1-8, the starch granules in old leaves were much larger than those in young leaves; however, the typical flattened discoid morphology was maintained. In ss4 and dpe2/phs1/ss4, the morphology of starch granules in young leaves was altered, with a more rounded shape observed. With leaf development, the starch granules became spherical exclusively in dpe2/phs1/ss4. Thus, the presented data provide new insights to contribute to the understanding of starch granule morphogenesis. |
format | Online Article Text |
id | pubmed-8510473 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85104732021-10-13 Starch Granule Size and Morphology of Arabidopsis thaliana Starch-Related Mutants Analyzed during Diurnal Rhythm and Development Liu, Qingting Zhou, Yuan Fettke, Joerg Molecules Communication Transitory starch plays a central role in the life cycle of plants. Many aspects of this important metabolism remain unknown; however, starch granules provide insight into this persistent metabolic process. Therefore, monitoring alterations in starch granules with high temporal resolution provides one significant avenue to improve understanding. Here, a previously established method that combines LCSM and safranin-O staining for in vivo imaging of transitory starch granules in leaves of Arabidopsis thaliana was employed to demonstrate, for the first time, the alterations in starch granule size and morphology that occur both throughout the day and during leaf aging. Several starch-related mutants were included, which revealed differences among the generated granules. In ptst2 and sex1-8, the starch granules in old leaves were much larger than those in young leaves; however, the typical flattened discoid morphology was maintained. In ss4 and dpe2/phs1/ss4, the morphology of starch granules in young leaves was altered, with a more rounded shape observed. With leaf development, the starch granules became spherical exclusively in dpe2/phs1/ss4. Thus, the presented data provide new insights to contribute to the understanding of starch granule morphogenesis. MDPI 2021-09-27 /pmc/articles/PMC8510473/ /pubmed/34641402 http://dx.doi.org/10.3390/molecules26195859 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Communication Liu, Qingting Zhou, Yuan Fettke, Joerg Starch Granule Size and Morphology of Arabidopsis thaliana Starch-Related Mutants Analyzed during Diurnal Rhythm and Development |
title | Starch Granule Size and Morphology of Arabidopsis thaliana Starch-Related Mutants Analyzed during Diurnal Rhythm and Development |
title_full | Starch Granule Size and Morphology of Arabidopsis thaliana Starch-Related Mutants Analyzed during Diurnal Rhythm and Development |
title_fullStr | Starch Granule Size and Morphology of Arabidopsis thaliana Starch-Related Mutants Analyzed during Diurnal Rhythm and Development |
title_full_unstemmed | Starch Granule Size and Morphology of Arabidopsis thaliana Starch-Related Mutants Analyzed during Diurnal Rhythm and Development |
title_short | Starch Granule Size and Morphology of Arabidopsis thaliana Starch-Related Mutants Analyzed during Diurnal Rhythm and Development |
title_sort | starch granule size and morphology of arabidopsis thaliana starch-related mutants analyzed during diurnal rhythm and development |
topic | Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8510473/ https://www.ncbi.nlm.nih.gov/pubmed/34641402 http://dx.doi.org/10.3390/molecules26195859 |
work_keys_str_mv | AT liuqingting starchgranulesizeandmorphologyofarabidopsisthalianastarchrelatedmutantsanalyzedduringdiurnalrhythmanddevelopment AT zhouyuan starchgranulesizeandmorphologyofarabidopsisthalianastarchrelatedmutantsanalyzedduringdiurnalrhythmanddevelopment AT fettkejoerg starchgranulesizeandmorphologyofarabidopsisthalianastarchrelatedmutantsanalyzedduringdiurnalrhythmanddevelopment |