Cargando…
Experimental and Numerical Investigation on the Size Effect of Ultrahigh-Performance Fibre-Reinforced Concrete (UHFRC)
In the last few years, there has been increasing interest in the use of Ultrahigh-Performance Fibre-Reinforced Concrete (UHPFRC) layers or jackets, which have been proved to be quite effective in strengthening applications. However, to facilitate the extensive use of UHPFRC in strengthening applicat...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8510484/ https://www.ncbi.nlm.nih.gov/pubmed/34640110 http://dx.doi.org/10.3390/ma14195714 |
_version_ | 1784582583735025664 |
---|---|
author | Lampropoulos, Andreas Nicolaides, Demetris Paschalis, Spyridon Tsioulou, Ourania |
author_facet | Lampropoulos, Andreas Nicolaides, Demetris Paschalis, Spyridon Tsioulou, Ourania |
author_sort | Lampropoulos, Andreas |
collection | PubMed |
description | In the last few years, there has been increasing interest in the use of Ultrahigh-Performance Fibre-Reinforced Concrete (UHPFRC) layers or jackets, which have been proved to be quite effective in strengthening applications. However, to facilitate the extensive use of UHPFRC in strengthening applications, reliable numerical models need to be developed. In the case of UHPFRC, it is common practice to perform either direct tensile or flexural tests to determine the UHPFRC tensile stress–strain models. However, the geometry of the specimens used for the material characterization is, in most cases, significantly different to the geometry of the layers used in strengthening applications which are normally of quite small thickness. Therefore, and since the material properties of UHPFRC are highly dependent on the dimensions of the examined specimens, the so called “size effect” needs to be considered for the development of an improved modelling approach. In this study, direct tensile tests have been used and a constitutive model for the tensile behaviour of UHPFRC is proposed, taking into consideration the size of the finite elements. The efficiency and reliability of the proposed approach has been validated using experimental data on prisms with different geometries, tested in flexure and in direct tension. |
format | Online Article Text |
id | pubmed-8510484 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85104842021-10-13 Experimental and Numerical Investigation on the Size Effect of Ultrahigh-Performance Fibre-Reinforced Concrete (UHFRC) Lampropoulos, Andreas Nicolaides, Demetris Paschalis, Spyridon Tsioulou, Ourania Materials (Basel) Article In the last few years, there has been increasing interest in the use of Ultrahigh-Performance Fibre-Reinforced Concrete (UHPFRC) layers or jackets, which have been proved to be quite effective in strengthening applications. However, to facilitate the extensive use of UHPFRC in strengthening applications, reliable numerical models need to be developed. In the case of UHPFRC, it is common practice to perform either direct tensile or flexural tests to determine the UHPFRC tensile stress–strain models. However, the geometry of the specimens used for the material characterization is, in most cases, significantly different to the geometry of the layers used in strengthening applications which are normally of quite small thickness. Therefore, and since the material properties of UHPFRC are highly dependent on the dimensions of the examined specimens, the so called “size effect” needs to be considered for the development of an improved modelling approach. In this study, direct tensile tests have been used and a constitutive model for the tensile behaviour of UHPFRC is proposed, taking into consideration the size of the finite elements. The efficiency and reliability of the proposed approach has been validated using experimental data on prisms with different geometries, tested in flexure and in direct tension. MDPI 2021-09-30 /pmc/articles/PMC8510484/ /pubmed/34640110 http://dx.doi.org/10.3390/ma14195714 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lampropoulos, Andreas Nicolaides, Demetris Paschalis, Spyridon Tsioulou, Ourania Experimental and Numerical Investigation on the Size Effect of Ultrahigh-Performance Fibre-Reinforced Concrete (UHFRC) |
title | Experimental and Numerical Investigation on the Size Effect of Ultrahigh-Performance Fibre-Reinforced Concrete (UHFRC) |
title_full | Experimental and Numerical Investigation on the Size Effect of Ultrahigh-Performance Fibre-Reinforced Concrete (UHFRC) |
title_fullStr | Experimental and Numerical Investigation on the Size Effect of Ultrahigh-Performance Fibre-Reinforced Concrete (UHFRC) |
title_full_unstemmed | Experimental and Numerical Investigation on the Size Effect of Ultrahigh-Performance Fibre-Reinforced Concrete (UHFRC) |
title_short | Experimental and Numerical Investigation on the Size Effect of Ultrahigh-Performance Fibre-Reinforced Concrete (UHFRC) |
title_sort | experimental and numerical investigation on the size effect of ultrahigh-performance fibre-reinforced concrete (uhfrc) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8510484/ https://www.ncbi.nlm.nih.gov/pubmed/34640110 http://dx.doi.org/10.3390/ma14195714 |
work_keys_str_mv | AT lampropoulosandreas experimentalandnumericalinvestigationonthesizeeffectofultrahighperformancefibrereinforcedconcreteuhfrc AT nicolaidesdemetris experimentalandnumericalinvestigationonthesizeeffectofultrahighperformancefibrereinforcedconcreteuhfrc AT paschalisspyridon experimentalandnumericalinvestigationonthesizeeffectofultrahighperformancefibrereinforcedconcreteuhfrc AT tsioulouourania experimentalandnumericalinvestigationonthesizeeffectofultrahighperformancefibrereinforcedconcreteuhfrc |