Cargando…

The cvn8 Conservon System Is a Global Regulator of Specialized Metabolism in Streptomyces coelicolor during Interspecies Interactions

Interspecies interactions are known to activate specialized metabolism in diverse actinomycetes. However, how interspecies cues are sensed and ultimately lead to induction of specialized metabolite biosynthetic gene clusters remains largely unexplored. Using transcriptome sequencing (RNA-seq), we an...

Descripción completa

Detalles Bibliográficos
Autores principales: Bonet, Bailey, Ra, Yein, Cantu Morin, Luis M., Soto Bustos, Javier, Livny, Jonathan, Traxler, Matthew F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8510531/
https://www.ncbi.nlm.nih.gov/pubmed/34636667
http://dx.doi.org/10.1128/mSystems.00281-21
_version_ 1784582594302574592
author Bonet, Bailey
Ra, Yein
Cantu Morin, Luis M.
Soto Bustos, Javier
Livny, Jonathan
Traxler, Matthew F.
author_facet Bonet, Bailey
Ra, Yein
Cantu Morin, Luis M.
Soto Bustos, Javier
Livny, Jonathan
Traxler, Matthew F.
author_sort Bonet, Bailey
collection PubMed
description Interspecies interactions are known to activate specialized metabolism in diverse actinomycetes. However, how interspecies cues are sensed and ultimately lead to induction of specialized metabolite biosynthetic gene clusters remains largely unexplored. Using transcriptome sequencing (RNA-seq), we analyzed genes that were transcriptionally induced in the model actinomycete Streptomyces coelicolor during interactions with four different actinomycetes, including genes that encode unusual regulatory systems known as conservons. Deletions in one such system, encoded by the cvn8 genes, led to altered patterns of pigmented antibiotic production by S. coelicolor during interactions. Further transcriptomic analysis of mutants lacking each of the five genes in the cvn8 locus demonstrated that this system is a global regulator of at least four different specialized metabolite biosynthetic pathways. How conservon systems work at the mechanistic level to regulate gene expression is not well understood, although it has been hypothesized that they may function in a way similar to eukaryotic G-protein-coupled receptors. The data presented here indicate that the gene products of the cvnA8 and cvnF8 (SCO6939) genes likely function together in one part of the Cvn8 signaling cascade, while the cvnC8 and cvnD8 gene products likely function together in another part. Importantly, because cvnD8 likely encodes a Ras-like GTPase, these results connect G-protein-mediated signaling to gene regulation in a bacterium. Additionally, deletion of any of the cvn8 genes led to abnormally high expression of an adjacent cryptic lanthipeptide biosynthetic gene cluster, indicating that conservon systems may be fruitful targets for manipulation to activate silent specialized metabolite biosynthetic pathways. IMPORTANCE Interactions between different species of actinomycete bacteria often trigger one of the strains to produce specialized metabolites, such as antibiotics. However, how this induction occurs at the genetic level is poorly understood. Using transcriptomic methods, we show that an unusual regulatory system, known as a conservon system, is responsible for regulating expression of multiple specialized metabolite biosynthetic gene clusters in the organism Streptomyces coelicolor during interactions. Conservon systems are unusual because they appear to employ small GTPases as an important component of their signaling cascades. Small GTPases are common in eukaryotic signaling pathways, but the results presented here are notable since they implicate a system that includes a small GTPase in global gene regulation in a bacterium. Mutants lacking this conservon system also showed abnormally high expression of a gene cluster involved in making an unknown specialized metabolite, suggesting that conservon mutants might be useful for driving natural product discovery.
format Online
Article
Text
id pubmed-8510531
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-85105312021-10-27 The cvn8 Conservon System Is a Global Regulator of Specialized Metabolism in Streptomyces coelicolor during Interspecies Interactions Bonet, Bailey Ra, Yein Cantu Morin, Luis M. Soto Bustos, Javier Livny, Jonathan Traxler, Matthew F. mSystems Research Article Interspecies interactions are known to activate specialized metabolism in diverse actinomycetes. However, how interspecies cues are sensed and ultimately lead to induction of specialized metabolite biosynthetic gene clusters remains largely unexplored. Using transcriptome sequencing (RNA-seq), we analyzed genes that were transcriptionally induced in the model actinomycete Streptomyces coelicolor during interactions with four different actinomycetes, including genes that encode unusual regulatory systems known as conservons. Deletions in one such system, encoded by the cvn8 genes, led to altered patterns of pigmented antibiotic production by S. coelicolor during interactions. Further transcriptomic analysis of mutants lacking each of the five genes in the cvn8 locus demonstrated that this system is a global regulator of at least four different specialized metabolite biosynthetic pathways. How conservon systems work at the mechanistic level to regulate gene expression is not well understood, although it has been hypothesized that they may function in a way similar to eukaryotic G-protein-coupled receptors. The data presented here indicate that the gene products of the cvnA8 and cvnF8 (SCO6939) genes likely function together in one part of the Cvn8 signaling cascade, while the cvnC8 and cvnD8 gene products likely function together in another part. Importantly, because cvnD8 likely encodes a Ras-like GTPase, these results connect G-protein-mediated signaling to gene regulation in a bacterium. Additionally, deletion of any of the cvn8 genes led to abnormally high expression of an adjacent cryptic lanthipeptide biosynthetic gene cluster, indicating that conservon systems may be fruitful targets for manipulation to activate silent specialized metabolite biosynthetic pathways. IMPORTANCE Interactions between different species of actinomycete bacteria often trigger one of the strains to produce specialized metabolites, such as antibiotics. However, how this induction occurs at the genetic level is poorly understood. Using transcriptomic methods, we show that an unusual regulatory system, known as a conservon system, is responsible for regulating expression of multiple specialized metabolite biosynthetic gene clusters in the organism Streptomyces coelicolor during interactions. Conservon systems are unusual because they appear to employ small GTPases as an important component of their signaling cascades. Small GTPases are common in eukaryotic signaling pathways, but the results presented here are notable since they implicate a system that includes a small GTPase in global gene regulation in a bacterium. Mutants lacking this conservon system also showed abnormally high expression of a gene cluster involved in making an unknown specialized metabolite, suggesting that conservon mutants might be useful for driving natural product discovery. American Society for Microbiology 2021-10-12 /pmc/articles/PMC8510531/ /pubmed/34636667 http://dx.doi.org/10.1128/mSystems.00281-21 Text en Copyright © 2021 Bonet et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Bonet, Bailey
Ra, Yein
Cantu Morin, Luis M.
Soto Bustos, Javier
Livny, Jonathan
Traxler, Matthew F.
The cvn8 Conservon System Is a Global Regulator of Specialized Metabolism in Streptomyces coelicolor during Interspecies Interactions
title The cvn8 Conservon System Is a Global Regulator of Specialized Metabolism in Streptomyces coelicolor during Interspecies Interactions
title_full The cvn8 Conservon System Is a Global Regulator of Specialized Metabolism in Streptomyces coelicolor during Interspecies Interactions
title_fullStr The cvn8 Conservon System Is a Global Regulator of Specialized Metabolism in Streptomyces coelicolor during Interspecies Interactions
title_full_unstemmed The cvn8 Conservon System Is a Global Regulator of Specialized Metabolism in Streptomyces coelicolor during Interspecies Interactions
title_short The cvn8 Conservon System Is a Global Regulator of Specialized Metabolism in Streptomyces coelicolor during Interspecies Interactions
title_sort cvn8 conservon system is a global regulator of specialized metabolism in streptomyces coelicolor during interspecies interactions
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8510531/
https://www.ncbi.nlm.nih.gov/pubmed/34636667
http://dx.doi.org/10.1128/mSystems.00281-21
work_keys_str_mv AT bonetbailey thecvn8conservonsystemisaglobalregulatorofspecializedmetabolisminstreptomycescoelicolorduringinterspeciesinteractions
AT rayein thecvn8conservonsystemisaglobalregulatorofspecializedmetabolisminstreptomycescoelicolorduringinterspeciesinteractions
AT cantumorinluism thecvn8conservonsystemisaglobalregulatorofspecializedmetabolisminstreptomycescoelicolorduringinterspeciesinteractions
AT sotobustosjavier thecvn8conservonsystemisaglobalregulatorofspecializedmetabolisminstreptomycescoelicolorduringinterspeciesinteractions
AT livnyjonathan thecvn8conservonsystemisaglobalregulatorofspecializedmetabolisminstreptomycescoelicolorduringinterspeciesinteractions
AT traxlermatthewf thecvn8conservonsystemisaglobalregulatorofspecializedmetabolisminstreptomycescoelicolorduringinterspeciesinteractions
AT bonetbailey cvn8conservonsystemisaglobalregulatorofspecializedmetabolisminstreptomycescoelicolorduringinterspeciesinteractions
AT rayein cvn8conservonsystemisaglobalregulatorofspecializedmetabolisminstreptomycescoelicolorduringinterspeciesinteractions
AT cantumorinluism cvn8conservonsystemisaglobalregulatorofspecializedmetabolisminstreptomycescoelicolorduringinterspeciesinteractions
AT sotobustosjavier cvn8conservonsystemisaglobalregulatorofspecializedmetabolisminstreptomycescoelicolorduringinterspeciesinteractions
AT livnyjonathan cvn8conservonsystemisaglobalregulatorofspecializedmetabolisminstreptomycescoelicolorduringinterspeciesinteractions
AT traxlermatthewf cvn8conservonsystemisaglobalregulatorofspecializedmetabolisminstreptomycescoelicolorduringinterspeciesinteractions