Cargando…
COVID-19 recommender system based on an annotated multilingual corpus
Tracking the most recent advances in Coronavirus disease 2019 (COVID-19)‒related research is essential, given the disease's novelty and its impact on society. However, with the publication pace speeding up, researchers and clinicians require automatic approaches to keep up with the incoming inf...
Autores principales: | Barros, Márcia, Ruas, Pedro, Sousa, Diana, Bangash, Ali Haider, Couto, Francisco M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korea Genome Organization
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8510867/ https://www.ncbi.nlm.nih.gov/pubmed/34638171 http://dx.doi.org/10.5808/gi.21008 |
Ejemplares similares
-
Visualizing the phenotype diversity: a case study of Alexander disease
por: Dohi, Eisuke, et al.
Publicado: (2021) -
A biomedically oriented automatically annotated Twitter COVID-19 dataset
por: Hernandez, Luis Alberto Robles, et al.
Publicado: (2021) -
LitCovid-AGAC: cellular and molecular level annotation data set based on COVID-19
por: Ouyang, Sizhuo, et al.
Publicado: (2021) -
Improving classification of low-resource COVID-19 literature by using Named Entity Recognition
por: Lithgow-Serrano, Oscar, et al.
Publicado: (2021) -
Constructing Japanese MeSH term dictionaries related to the COVID-19 literature
por: Yamaguchi, Atsuko, et al.
Publicado: (2021)