Cargando…
A biomedically oriented automatically annotated Twitter COVID-19 dataset
The use of social media data, like Twitter, for biomedical research has been gradually increasing over the years. With the coronavirus disease 2019 (COVID-19) pandemic, researchers have turned to more non-traditional sources of clinical data to characterize the disease in near-real time, study the s...
Autores principales: | Hernandez, Luis Alberto Robles, Callahan, Tiffany J., Banda, Juan M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korea Genome Organization
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8510871/ https://www.ncbi.nlm.nih.gov/pubmed/34638168 http://dx.doi.org/10.5808/gi.21011 |
Ejemplares similares
-
A Biomedically oriented automatically annotated Twitter COVID-19 Dataset
por: Robles Hernandez, Luis Alberto, et al.
Publicado: (2021) -
COVID-19 recommender system based on an annotated multilingual corpus
por: Barros, Márcia, et al.
Publicado: (2021) -
LitCovid-AGAC: cellular and molecular level annotation data set based on COVID-19
por: Ouyang, Sizhuo, et al.
Publicado: (2021) -
OryzaGP 2021 update: a rice gene and protein dataset for named-entity recognition
por: Larmande, Pierre, et al.
Publicado: (2021) -
Constructing Japanese MeSH term dictionaries related to the COVID-19 literature
por: Yamaguchi, Atsuko, et al.
Publicado: (2021)