Cargando…
Improving classification of low-resource COVID-19 literature by using Named Entity Recognition
Automatic document classification for highly interrelated classes is a demanding task that becomes more challenging when there is little labeled data for training. Such is the case of the coronavirus disease 2019 (COVID-19) clinical repository—a repository of classified and translated academic artic...
Autores principales: | Lithgow-Serrano, Oscar, Cornelius, Joseph, Kanjirangat, Vani, Méndez-Cruz, Carlos-Francisco, Rinaldi, Fabio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korea Genome Organization
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8510872/ https://www.ncbi.nlm.nih.gov/pubmed/34638169 http://dx.doi.org/10.5808/gi.21018 |
Ejemplares similares
-
OryzaGP 2021 update: a rice gene and protein dataset for named-entity recognition
por: Larmande, Pierre, et al.
Publicado: (2021) -
Constructing Japanese MeSH term dictionaries related to the COVID-19 literature
por: Yamaguchi, Atsuko, et al.
Publicado: (2021) -
COVID-19 recommender system based on an annotated multilingual corpus
por: Barros, Márcia, et al.
Publicado: (2021) -
O-JMeSH: creating a bilingual English-Japanese controlled vocabulary of MeSH UIDs through machine translation and mutual information
por: Soares, Felipe, et al.
Publicado: (2021) -
A biomedically oriented automatically annotated Twitter COVID-19 dataset
por: Hernandez, Luis Alberto Robles, et al.
Publicado: (2021)