Cargando…
LitCovid-AGAC: cellular and molecular level annotation data set based on COVID-19
Currently, coronavirus disease 2019 (COVID-19) literature has been increasing dramatically, and the increased text amount make it possible to perform large scale text mining and knowledge discovery. Therefore, curation of these texts becomes a crucial issue for Bio-medical Natural Language Processin...
Autores principales: | Ouyang, Sizhuo, Wang, Yuxing, Zhou, Kaiyin, Xia, Jingbo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korea Genome Organization
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8510875/ https://www.ncbi.nlm.nih.gov/pubmed/34638170 http://dx.doi.org/10.5808/gi.21013 |
Ejemplares similares
-
COVID-19 recommender system based on an annotated multilingual corpus
por: Barros, Márcia, et al.
Publicado: (2021) -
A biomedically oriented automatically annotated Twitter COVID-19 dataset
por: Hernandez, Luis Alberto Robles, et al.
Publicado: (2021) -
OryzaGP 2021 update: a rice gene and protein dataset for named-entity recognition
por: Larmande, Pierre, et al.
Publicado: (2021) -
Constructing Japanese MeSH term dictionaries related to the COVID-19 literature
por: Yamaguchi, Atsuko, et al.
Publicado: (2021) -
Improving classification of low-resource COVID-19 literature by using Named Entity Recognition
por: Lithgow-Serrano, Oscar, et al.
Publicado: (2021)