Cargando…
Weakly supervised segmentation of tumor lesions in PET-CT hybrid imaging
Purpose: We introduce and evaluate deep learning methods for weakly supervised segmentation of tumor lesions in whole-body fluorodeoxyglucose-positron emission tomography (FDG-PET) based solely on binary global labels (“tumor” versus “no tumor”). Approach: We propose a three-step approach based on (...
Autores principales: | Früh, Marcel, Fischer, Marc, Schilling, Andreas, Gatidis, Sergios, Hepp, Tobias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8510879/ https://www.ncbi.nlm.nih.gov/pubmed/34660843 http://dx.doi.org/10.1117/1.JMI.8.5.054003 |
Ejemplares similares
-
A whole-body FDG-PET/CT Dataset with manually annotated Tumor Lesions
por: Gatidis, Sergios, et al.
Publicado: (2022) -
Hippocampus segmentation in CT using deep learning: impact of MR versus CT-based training contours
por: Hänsch, Annika, et al.
Publicado: (2020) -
Hybrid U‐Net‐based deep learning model for volume segmentation of lung nodules in CT images
por: Wang, Yifan, et al.
Publicado: (2022) -
Impact of PET/CT system, reconstruction protocol, data analysis method, and repositioning on PET/CT precision: An experimental evaluation using an oncology and brain phantom
por: Mansor, Syahir, et al.
Publicado: (2017) -
A CT‐less approach to quantitative PET imaging using the LSO intrinsic radiation for long‐axial FOV PET scanners
por: Teimoorisichani, Mohammadreza, et al.
Publicado: (2021)