Cargando…
Kottamia Faint Imaging Spectro-Polarimeter (KFISP): opto-mechanical design, software control and performance analysis
In this paper we describe the Kottamia Faint Imaging Spectro-Polarimeter (KFISP) that has been recently developed and designed to be mounted at the Cassegrain focus of the 1.88 m telescope at Kottamia Astronomical Observatory (KAO), Egypt. The optical design of KFISP is developed such that it can be...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8510887/ https://www.ncbi.nlm.nih.gov/pubmed/34658528 http://dx.doi.org/10.1007/s10686-021-09802-z |
_version_ | 1784582668809142272 |
---|---|
author | Azzam, Yosry A. Elnagahy, F. I. Y. Ali, Gamal B. Essam, A. Saad, Somaya Ismail, Hamed Zead, I. Ahmed, Nasser M. Yoshida, Michitoshi Kawabata, Koji S. Akitaya, Hiroshi Shokry, A. Hendy, Y. H. M. Takey, Ali Hamed, G. M. Mack, Peter |
author_facet | Azzam, Yosry A. Elnagahy, F. I. Y. Ali, Gamal B. Essam, A. Saad, Somaya Ismail, Hamed Zead, I. Ahmed, Nasser M. Yoshida, Michitoshi Kawabata, Koji S. Akitaya, Hiroshi Shokry, A. Hendy, Y. H. M. Takey, Ali Hamed, G. M. Mack, Peter |
author_sort | Azzam, Yosry A. |
collection | PubMed |
description | In this paper we describe the Kottamia Faint Imaging Spectro-Polarimeter (KFISP) that has been recently developed and designed to be mounted at the Cassegrain focus of the 1.88 m telescope at Kottamia Astronomical Observatory (KAO), Egypt. The optical design of KFISP is developed such that it can be used in various modes of operation. These are: direct imaging, spectroscopic, polarimetric imaging, and spectro-polarimetric. The KFISP is an all-refractive design to meet the polarimetric requirements and includes a focal reducer with a corrector section, collimator section, parallel beam section (containing various imaging components), and camera section. The corrector section gives an unvignetted Field-of-View of 8ʹ × 8ʹ and the collimator section has a focal length of 305 mm and matches the focal ratio of the input beam. The parallel beam section is 200 mm long and near the middle of it there is an image of the telescope pupil. The camera section includes 5 elements and has a focal length of 154.51 mm which gives an instrument effective final focal ratio of f/6.14 (acting as a telescope focal reducer of 1:2 ratio). The KFISP contains an internal calibration system which hosts the calibration light injection system, an integrating sphere equipped with the required calibration light sources. The opto-mechanical parts of KFISP contain a double-layered carbon fiber strut structure and comprises its subsystems of slit and guider assemblies, filter wheel drawer, grism wheel drawer, polarimetric components cubical box, and CCD camera which is integrated with camera optics. The CCD camera has 2048 [Formula: see text] 2048 pixels with 13.5-micron square pixel size. The camera is cooled by liquid Nitrogen and is fixed to the KFISP through the integrated camera lens. The KFISP has been fully commissioned, mounted and is being tested in all modes of operation. In this paper we introduce the ambitious scientific goals, the optical setups of KFISP, its opto-mechanical implementation and the performance analysis of the instrument. In addition, we describe the camera system, its performance, and its software control. Finally, we present a sample of the first light observations obtained from the instrument. |
format | Online Article Text |
id | pubmed-8510887 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Springer Netherlands |
record_format | MEDLINE/PubMed |
spelling | pubmed-85108872021-10-13 Kottamia Faint Imaging Spectro-Polarimeter (KFISP): opto-mechanical design, software control and performance analysis Azzam, Yosry A. Elnagahy, F. I. Y. Ali, Gamal B. Essam, A. Saad, Somaya Ismail, Hamed Zead, I. Ahmed, Nasser M. Yoshida, Michitoshi Kawabata, Koji S. Akitaya, Hiroshi Shokry, A. Hendy, Y. H. M. Takey, Ali Hamed, G. M. Mack, Peter Exp Astron (Dordr) Original Article In this paper we describe the Kottamia Faint Imaging Spectro-Polarimeter (KFISP) that has been recently developed and designed to be mounted at the Cassegrain focus of the 1.88 m telescope at Kottamia Astronomical Observatory (KAO), Egypt. The optical design of KFISP is developed such that it can be used in various modes of operation. These are: direct imaging, spectroscopic, polarimetric imaging, and spectro-polarimetric. The KFISP is an all-refractive design to meet the polarimetric requirements and includes a focal reducer with a corrector section, collimator section, parallel beam section (containing various imaging components), and camera section. The corrector section gives an unvignetted Field-of-View of 8ʹ × 8ʹ and the collimator section has a focal length of 305 mm and matches the focal ratio of the input beam. The parallel beam section is 200 mm long and near the middle of it there is an image of the telescope pupil. The camera section includes 5 elements and has a focal length of 154.51 mm which gives an instrument effective final focal ratio of f/6.14 (acting as a telescope focal reducer of 1:2 ratio). The KFISP contains an internal calibration system which hosts the calibration light injection system, an integrating sphere equipped with the required calibration light sources. The opto-mechanical parts of KFISP contain a double-layered carbon fiber strut structure and comprises its subsystems of slit and guider assemblies, filter wheel drawer, grism wheel drawer, polarimetric components cubical box, and CCD camera which is integrated with camera optics. The CCD camera has 2048 [Formula: see text] 2048 pixels with 13.5-micron square pixel size. The camera is cooled by liquid Nitrogen and is fixed to the KFISP through the integrated camera lens. The KFISP has been fully commissioned, mounted and is being tested in all modes of operation. In this paper we introduce the ambitious scientific goals, the optical setups of KFISP, its opto-mechanical implementation and the performance analysis of the instrument. In addition, we describe the camera system, its performance, and its software control. Finally, we present a sample of the first light observations obtained from the instrument. Springer Netherlands 2021-10-13 2022 /pmc/articles/PMC8510887/ /pubmed/34658528 http://dx.doi.org/10.1007/s10686-021-09802-z Text en © The Author(s), under exclusive licence to Springer Nature B.V. 2021 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
spellingShingle | Original Article Azzam, Yosry A. Elnagahy, F. I. Y. Ali, Gamal B. Essam, A. Saad, Somaya Ismail, Hamed Zead, I. Ahmed, Nasser M. Yoshida, Michitoshi Kawabata, Koji S. Akitaya, Hiroshi Shokry, A. Hendy, Y. H. M. Takey, Ali Hamed, G. M. Mack, Peter Kottamia Faint Imaging Spectro-Polarimeter (KFISP): opto-mechanical design, software control and performance analysis |
title | Kottamia Faint Imaging Spectro-Polarimeter (KFISP): opto-mechanical design, software control and performance analysis |
title_full | Kottamia Faint Imaging Spectro-Polarimeter (KFISP): opto-mechanical design, software control and performance analysis |
title_fullStr | Kottamia Faint Imaging Spectro-Polarimeter (KFISP): opto-mechanical design, software control and performance analysis |
title_full_unstemmed | Kottamia Faint Imaging Spectro-Polarimeter (KFISP): opto-mechanical design, software control and performance analysis |
title_short | Kottamia Faint Imaging Spectro-Polarimeter (KFISP): opto-mechanical design, software control and performance analysis |
title_sort | kottamia faint imaging spectro-polarimeter (kfisp): opto-mechanical design, software control and performance analysis |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8510887/ https://www.ncbi.nlm.nih.gov/pubmed/34658528 http://dx.doi.org/10.1007/s10686-021-09802-z |
work_keys_str_mv | AT azzamyosrya kottamiafaintimagingspectropolarimeterkfispoptomechanicaldesignsoftwarecontrolandperformanceanalysis AT elnagahyfiy kottamiafaintimagingspectropolarimeterkfispoptomechanicaldesignsoftwarecontrolandperformanceanalysis AT aligamalb kottamiafaintimagingspectropolarimeterkfispoptomechanicaldesignsoftwarecontrolandperformanceanalysis AT essama kottamiafaintimagingspectropolarimeterkfispoptomechanicaldesignsoftwarecontrolandperformanceanalysis AT saadsomaya kottamiafaintimagingspectropolarimeterkfispoptomechanicaldesignsoftwarecontrolandperformanceanalysis AT ismailhamed kottamiafaintimagingspectropolarimeterkfispoptomechanicaldesignsoftwarecontrolandperformanceanalysis AT zeadi kottamiafaintimagingspectropolarimeterkfispoptomechanicaldesignsoftwarecontrolandperformanceanalysis AT ahmednasserm kottamiafaintimagingspectropolarimeterkfispoptomechanicaldesignsoftwarecontrolandperformanceanalysis AT yoshidamichitoshi kottamiafaintimagingspectropolarimeterkfispoptomechanicaldesignsoftwarecontrolandperformanceanalysis AT kawabatakojis kottamiafaintimagingspectropolarimeterkfispoptomechanicaldesignsoftwarecontrolandperformanceanalysis AT akitayahiroshi kottamiafaintimagingspectropolarimeterkfispoptomechanicaldesignsoftwarecontrolandperformanceanalysis AT shokrya kottamiafaintimagingspectropolarimeterkfispoptomechanicaldesignsoftwarecontrolandperformanceanalysis AT hendyyhm kottamiafaintimagingspectropolarimeterkfispoptomechanicaldesignsoftwarecontrolandperformanceanalysis AT takeyali kottamiafaintimagingspectropolarimeterkfispoptomechanicaldesignsoftwarecontrolandperformanceanalysis AT hamedgm kottamiafaintimagingspectropolarimeterkfispoptomechanicaldesignsoftwarecontrolandperformanceanalysis AT mackpeter kottamiafaintimagingspectropolarimeterkfispoptomechanicaldesignsoftwarecontrolandperformanceanalysis |