Cargando…
Deploying and scaling distributed parallel deep neural networks on the Tianhe-3 prototype system
Due to the increase in computing power, it is possible to improve the feature extraction and data fitting capabilities of DNN networks by increasing their depth and model complexity. However, the big data and complex models greatly increase the training overhead of DNN, so accelerating their trainin...
Autores principales: | Wei, Jia, Zhang, Xingjun, Ji, Zeyu, Li, Jingbo, Wei, Zheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8511035/ https://www.ncbi.nlm.nih.gov/pubmed/34642373 http://dx.doi.org/10.1038/s41598-021-98794-z |
Ejemplares similares
-
An Interface for Biomedical Big Data Processing on the Tianhe-2 Supercomputer
por: Yang, Xi, et al.
Publicado: (2017) -
VSTH: a user-friendly web server for structure-based virtual screening on Tianhe-2
por: Mo, Qing, et al.
Publicado: (2022) -
Quantization and Deployment of Deep Neural Networks on Microcontrollers
por: Novac, Pierre-Emmanuel, et al.
Publicado: (2021) -
Screening for colorectal cancer in Tianhe, Guangzhou: results of combining fecal immunochemical tests and risk factors for selecting patients requiring colonoscopy
por: Liao, Yi, et al.
Publicado: (2018) -
Deploying and Optimizing Embodied Simulations of Large-Scale Spiking Neural Networks on HPC Infrastructure
por: Feldotto, Benedikt, et al.
Publicado: (2022)