Cargando…

Machine learning enabling prediction of the bond dissociation enthalpy of hypervalent iodine from SMILES

Machine learning to create models on the basis of big data enables predictions from new input data. Many tasks formerly performed by humans can now be achieved by machine learning algorithms in various fields, including scientific areas. Hypervalent iodine compounds (HVIs) have long been applied as...

Descripción completa

Detalles Bibliográficos
Autores principales: Nakajima, Masaya, Nemoto, Tetsuhiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8511102/
https://www.ncbi.nlm.nih.gov/pubmed/34642360
http://dx.doi.org/10.1038/s41598-021-99369-8
Descripción
Sumario:Machine learning to create models on the basis of big data enables predictions from new input data. Many tasks formerly performed by humans can now be achieved by machine learning algorithms in various fields, including scientific areas. Hypervalent iodine compounds (HVIs) have long been applied as useful reactive molecules. The bond dissociation enthalpy (BDE) value is an important indicator of reactivity and stability. Experimentally measuring the BDE value of HVIs is difficult, however, and the value has been estimated by quantum calculations, especially density functional theory (DFT) calculations. Although DFT calculations can access the BDE value with high accuracy, the process is highly time-consuming. Thus, we aimed to reduce the time for predicting the BDE by applying machine learning. We calculated the BDE of more than 1000 HVIs using DFT calculations, and performed machine learning. Converting SMILES strings to Avalon fingerprints and learning using a traditional Elastic Net made it possible to predict the BDE value with high accuracy. Furthermore, an applicability domain search revealed that the learning model could accurately predict the BDE even for uncovered inputs that were not completely included in the training data.