Cargando…

Height, but not binding epitope, affects the potency of synthetic TCR agonists

Under physiological conditions, peptide-major histocompatibility complex (pMHC) molecules can trigger T cell receptors (TCRs) as monovalent ligands that are sparsely distributed on the plasma membrane of an antigen-presenting cell. TCRs can also be triggered by artificial clustering, such as with pM...

Descripción completa

Detalles Bibliográficos
Autores principales: Wilhelm, Kiera B., Morita, Shumpei, McAffee, Darren B., Kim, Sungi, O’Dair, Mark K., Groves, Jay T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Biophysical Society 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8511163/
https://www.ncbi.nlm.nih.gov/pubmed/34453921
http://dx.doi.org/10.1016/j.bpj.2021.08.027
Descripción
Sumario:Under physiological conditions, peptide-major histocompatibility complex (pMHC) molecules can trigger T cell receptors (TCRs) as monovalent ligands that are sparsely distributed on the plasma membrane of an antigen-presenting cell. TCRs can also be triggered by artificial clustering, such as with pMHC tetramers or antibodies; however, these strategies circumvent many of the natural ligand discrimination mechanisms of the T cell and can elicit nonphysiological signaling activity. We have recently introduced a synthetic TCR agonist composed of an anti-TCRβ Fab′ antibody fragment covalently bound to a DNA oligonucleotide, which serves as a membrane anchor. This Fab′-DNA ligand efficiently triggers TCR as a monomer when membrane associated and exhibits a potency and activation profile resembling agonist pMHC. In this report, we explore the geometric requirements for efficient TCR triggering and cellular activation by Fab′-DNA ligands. We find that T cells are insensitive to the ligand binding epitope on the TCR complex but that length of the DNA tether is important. Increasing, the intermembrane distance spanned by Fab′-DNA:TCR complexes decreases TCR triggering efficiency and T cell activation potency, consistent with the kinetic-segregation model of TCR triggering. These results establish design parameters for constructing synthetic TCR agonists that are able to activate polyclonal T cell populations, such as T cells from a human patient, in a similar manner as the native pMHC ligand.