Cargando…
Deep Learning Exploration of Agent-Based Social Network Model Parameters
Interactions between humans give rise to complex social networks that are characterized by heterogeneous degree distribution, weight-topology relation, overlapping community structure, and dynamics of links. Understanding these characteristics of social networks is the primary goal of their research...
Autores principales: | Murase, Yohsuke, Jo, Hang-Hyun, Török, János, Kertész, János, Kaski, Kimmo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8511694/ https://www.ncbi.nlm.nih.gov/pubmed/34661097 http://dx.doi.org/10.3389/fdata.2021.739081 |
Ejemplares similares
-
Structural transition in social networks: The role of homophily
por: Murase, Yohsuke, et al.
Publicado: (2019) -
Modeling the Role of Relationship Fading and Breakup in Social Network Formation
por: Murase, Yohsuke, et al.
Publicado: (2015) -
Deep Representation Learning for Social Network Analysis
por: Tan, Qiaoyu, et al.
Publicado: (2019) -
Deep Graph Learning for Circuit Deobfuscation
por: Chen, Zhiqian, et al.
Publicado: (2021) -
SemNet: Learning semantic attributes for human activity recognition with deep belief networks
por: Venkatachalam, Shanmuga, et al.
Publicado: (2022)