Cargando…
Prediction of Malignant Transformation of WHO II Astrocytoma Using Mathematical Models Incorporating Apparent Diffusion Coefficient and Contrast Enhancement
Using only increasing contrast enhancement as a marker of malignant transformation (MT) in gliomas has low specificity and may affect interpretation of clinical outcomes. Therefore we developed a mathematical model to predict MT of low-grade gliomas (LGGs) by considering areas of reduced apparent di...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8511697/ https://www.ncbi.nlm.nih.gov/pubmed/34660309 http://dx.doi.org/10.3389/fonc.2021.744827 |
_version_ | 1784582822277677056 |
---|---|
author | Wong, Alex Mun-Ching Siow, Tiing Yee Wei, Kuo-Chen Chen, Pin-Yuan Toh, Cheng Hong Castillo, Mauricio |
author_facet | Wong, Alex Mun-Ching Siow, Tiing Yee Wei, Kuo-Chen Chen, Pin-Yuan Toh, Cheng Hong Castillo, Mauricio |
author_sort | Wong, Alex Mun-Ching |
collection | PubMed |
description | Using only increasing contrast enhancement as a marker of malignant transformation (MT) in gliomas has low specificity and may affect interpretation of clinical outcomes. Therefore we developed a mathematical model to predict MT of low-grade gliomas (LGGs) by considering areas of reduced apparent diffusion coefficient (ADC) with increased contrast enhancement. Patients with contrast-enhancing LGGs who had contemporaneous ADC and histopathology were retrospectively analyzed. Multiple clinical factors and imaging factors (contrast-enhancement size, whole-tumor size, and ADC) were assessed for association with MT. Patients were split into training and validation groups for the development of a predictive model using logistic regression which was assessed with receiver operating characteristic analysis. Among 132 patients, (median age 46.5 years), 106 patients (64 MT) were assigned to the training group and 26 (20 MT) to the validation group. The predictive model comprised age (P = 0.110), radiotherapy (P = 0.168), contrast-enhancement size (P = 0.015), and ADC (P < 0.001). The predictive model (area-under-the-curve [AUC] 0.87) outperformed ADC (AUC 0.85) and contrast-enhancement size (AUC 0.67). The model had an accuracy of 84% for the training group and 85% respectively for the validation group. Our model incorporating ADC and contrast-enhancement size predicted MT in contrast-enhancing LGGs. |
format | Online Article Text |
id | pubmed-8511697 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-85116972021-10-14 Prediction of Malignant Transformation of WHO II Astrocytoma Using Mathematical Models Incorporating Apparent Diffusion Coefficient and Contrast Enhancement Wong, Alex Mun-Ching Siow, Tiing Yee Wei, Kuo-Chen Chen, Pin-Yuan Toh, Cheng Hong Castillo, Mauricio Front Oncol Oncology Using only increasing contrast enhancement as a marker of malignant transformation (MT) in gliomas has low specificity and may affect interpretation of clinical outcomes. Therefore we developed a mathematical model to predict MT of low-grade gliomas (LGGs) by considering areas of reduced apparent diffusion coefficient (ADC) with increased contrast enhancement. Patients with contrast-enhancing LGGs who had contemporaneous ADC and histopathology were retrospectively analyzed. Multiple clinical factors and imaging factors (contrast-enhancement size, whole-tumor size, and ADC) were assessed for association with MT. Patients were split into training and validation groups for the development of a predictive model using logistic regression which was assessed with receiver operating characteristic analysis. Among 132 patients, (median age 46.5 years), 106 patients (64 MT) were assigned to the training group and 26 (20 MT) to the validation group. The predictive model comprised age (P = 0.110), radiotherapy (P = 0.168), contrast-enhancement size (P = 0.015), and ADC (P < 0.001). The predictive model (area-under-the-curve [AUC] 0.87) outperformed ADC (AUC 0.85) and contrast-enhancement size (AUC 0.67). The model had an accuracy of 84% for the training group and 85% respectively for the validation group. Our model incorporating ADC and contrast-enhancement size predicted MT in contrast-enhancing LGGs. Frontiers Media S.A. 2021-09-29 /pmc/articles/PMC8511697/ /pubmed/34660309 http://dx.doi.org/10.3389/fonc.2021.744827 Text en Copyright © 2021 Wong, Siow, Wei, Chen, Toh and Castillo https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Oncology Wong, Alex Mun-Ching Siow, Tiing Yee Wei, Kuo-Chen Chen, Pin-Yuan Toh, Cheng Hong Castillo, Mauricio Prediction of Malignant Transformation of WHO II Astrocytoma Using Mathematical Models Incorporating Apparent Diffusion Coefficient and Contrast Enhancement |
title | Prediction of Malignant Transformation of WHO II Astrocytoma Using Mathematical Models Incorporating Apparent Diffusion Coefficient and Contrast Enhancement |
title_full | Prediction of Malignant Transformation of WHO II Astrocytoma Using Mathematical Models Incorporating Apparent Diffusion Coefficient and Contrast Enhancement |
title_fullStr | Prediction of Malignant Transformation of WHO II Astrocytoma Using Mathematical Models Incorporating Apparent Diffusion Coefficient and Contrast Enhancement |
title_full_unstemmed | Prediction of Malignant Transformation of WHO II Astrocytoma Using Mathematical Models Incorporating Apparent Diffusion Coefficient and Contrast Enhancement |
title_short | Prediction of Malignant Transformation of WHO II Astrocytoma Using Mathematical Models Incorporating Apparent Diffusion Coefficient and Contrast Enhancement |
title_sort | prediction of malignant transformation of who ii astrocytoma using mathematical models incorporating apparent diffusion coefficient and contrast enhancement |
topic | Oncology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8511697/ https://www.ncbi.nlm.nih.gov/pubmed/34660309 http://dx.doi.org/10.3389/fonc.2021.744827 |
work_keys_str_mv | AT wongalexmunching predictionofmalignanttransformationofwhoiiastrocytomausingmathematicalmodelsincorporatingapparentdiffusioncoefficientandcontrastenhancement AT siowtiingyee predictionofmalignanttransformationofwhoiiastrocytomausingmathematicalmodelsincorporatingapparentdiffusioncoefficientandcontrastenhancement AT weikuochen predictionofmalignanttransformationofwhoiiastrocytomausingmathematicalmodelsincorporatingapparentdiffusioncoefficientandcontrastenhancement AT chenpinyuan predictionofmalignanttransformationofwhoiiastrocytomausingmathematicalmodelsincorporatingapparentdiffusioncoefficientandcontrastenhancement AT tohchenghong predictionofmalignanttransformationofwhoiiastrocytomausingmathematicalmodelsincorporatingapparentdiffusioncoefficientandcontrastenhancement AT castillomauricio predictionofmalignanttransformationofwhoiiastrocytomausingmathematicalmodelsincorporatingapparentdiffusioncoefficientandcontrastenhancement |