Cargando…
Deep Learning Algorithms Correctly Classify Brassica rapa Varieties Using Digital Images
Efficient and accurate methods of analysis are needed for the huge amount of biological data that have accumulated in various research fields, including genomics, phenomics, and genetics. Artificial intelligence (AI)-based analysis is one promising method to manipulate biological data. To this end,...
Autores principales: | Jung, Minah, Song, Jong Seob, Hong, Seongmin, Kim, SunWoo, Go, Sangjin, Lim, Yong Pyo, Park, Juhan, Park, Sung Goo, Kim, Yong-Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8511822/ https://www.ncbi.nlm.nih.gov/pubmed/34659305 http://dx.doi.org/10.3389/fpls.2021.738685 |
Ejemplares similares
-
Progress in Understanding and Sequencing the Genome of Brassica rapa
por: Hong, Chang Pyo, et al.
Publicado: (2008) -
Unleashing the Genome of Brassica Rapa
por: Tang, Haibao, et al.
Publicado: (2012) -
L-Cysteine Increases the Transformation Efficiency of Chinese Cabbage (Brassica rapa ssp. pekinensis)
por: Sivanandhan, Ganeshan, et al.
Publicado: (2021) -
Construction of deep learning-based disease detection model in plants
por: Jung, Minah, et al.
Publicado: (2023) -
Construction of chromosome segment substitution lines enables QTL mapping for flowering and morphological traits in Brassica rapa
por: Li, Xiaonan, et al.
Publicado: (2015)