Cargando…
Augmented words to improve a deep learning-based Indonesian syllabification()
Recent deep learning-based syllabification models generally give low error rates for high-resource languages with big datasets but sometimes produce high error rates for the low-resource ones. In this paper, two procedures: massive data augmentation and validation, are proposed to improve a deep lea...
Autores principales: | Suyanto, Suyanto, Romadhony, Ade, Sthevanie, Febryanti, Ismail, Rezza Nafi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8511842/ https://www.ncbi.nlm.nih.gov/pubmed/34693050 http://dx.doi.org/10.1016/j.heliyon.2021.e08115 |
Ejemplares similares
-
Augmented-syllabification of n-gram tagger for Indonesian words and named-entities
por: Suyanto, Suyanto, et al.
Publicado: (2022) -
Clustering and firm productivity spillovers in Indonesian manufacturing
por: Suyanto, Suyanto, et al.
Publicado: (2021) -
Adversarial training and deep k-nearest neighbors improves adversarial defense of glaucoma severity detection
por: Riza Rizky, Lalu M., et al.
Publicado: (2022) -
A Rare Delayed Atypical Pseudoprogression in Nivolumab-Treated Non-Small-Cell Lung Cancer
por: Suyanto, Suyanto, et al.
Publicado: (2019) -
The Effect of Treatment during A Haze/Post-Haze Year on Subsequent Respiratory Morbidity Status among Successful Treatment Tuberculosis Cases
por: Suyanto, Suyanto, et al.
Publicado: (2019)