Cargando…
A review of COVID-19: Treatment strategies and CRISPR/Cas9 gene editing technology approaches to the coronavirus disease
The new coronavirus SARS-CoV-2 pandemic has put the world on lockdown for the first time in decades. This has wreaked havoc on the global economy, put additional burden on local and global public health resources, and, most importantly, jeopardised human health. CRISPR stands for Clustered Regularly...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8511869/ https://www.ncbi.nlm.nih.gov/pubmed/34658640 http://dx.doi.org/10.1016/j.sjbs.2021.10.020 |
Sumario: | The new coronavirus SARS-CoV-2 pandemic has put the world on lockdown for the first time in decades. This has wreaked havoc on the global economy, put additional burden on local and global public health resources, and, most importantly, jeopardised human health. CRISPR stands for Clustered Regularly Interspaced Short Palindromic Repeats, and the CRISPR associated (Cas) protein (CRISPR/Cas) was identified to have structures in E. coli. The most modern of these systems is CRISPR/Cas. Editing the genomes of plants and animals took several years and cost hundreds of thousands of dollars until the CRISPR approach was discovered in 2012. As a result, CRISPR/Cas has piqued the scientific community's attention, particularly for disease diagnosis and treatment, because it is faster, less expensive, and more precise than previous genome editing technologies. Data from gene mutations in specific patients gathered using CRISPR/Cas can aid in the identification of the best treatment strategy for each patient, as well as other research domains such as coronavirus replication in cell culture, such as SARS-CoV2. The implications of the most prevalent driver mutations, on the other hand, are often unknown, making treatment interpretation difficult. For detecting a wide range of target genes, the CRISPR/Cas categories provide highly sensitive and selective tools. Genome-wide association studies are a relatively new strategy to discovering genes involved in human disease when it comes to the next steps in genomic research. Furthermore, CRISPR/Cas provides a method for modifying non-coding portions of the genome, which will help advance whole genome libraries by speeding up the analysis of these poorly defined parts of the genome. |
---|