Cargando…
Remaining Useful Life Estimation for Engineered Systems Operating under Uncertainty with Causal GraphNets
In this work, a novel approach, termed GNN-tCNN, is presented for the construction and training of Remaining Useful Life (RUL) models. The method exploits Graph Neural Networks (GNNs) and deals with the problem of efficiently learning from time series with non-equidistant observations, which may spa...
Autores principales: | Mylonas, Charilaos, Chatzi, Eleni |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512019/ https://www.ncbi.nlm.nih.gov/pubmed/34640645 http://dx.doi.org/10.3390/s21196325 |
Ejemplares similares
-
Integrating multiomics and prior knowledge: a study of the Graphnet penalty impact
por: Chegraoui, Hamza, et al.
Publicado: (2023) -
SDFPoseGraphNet: Spatial Deep Feature Pose Graph Network for 2D Hand Pose Estimation
por: Salman, Sartaj Ahmed, et al.
Publicado: (2023) -
Remaining Useful Life Prediction Method for Bearings Based on LSTM with Uncertainty Quantification
por: Yang, Jinsong, et al.
Publicado: (2022) -
Post-operative glioblastoma multiforme segmentation with uncertainty estimation
por: Holtzman Gazit, Michal, et al.
Publicado: (2022) -
Optimization under uncertainty with applications to aerospace engineering
por: Vasile, Massimiliano
Publicado: (2021)