Cargando…
Smartphone-Based Human Sitting Behaviors Recognition Using Inertial Sensor
At present, people spend most of their time in passive rather than active mode. Sitting with computers for a long time may lead to unhealthy conditions like shoulder pain, numbness, headache, etc. To overcome this problem, human posture should be changed for particular intervals of time. This paper...
Autores principales: | Sinha, Vikas Kumar, Patro, Kiran Kumar, Pławiak, Paweł, Prakash, Allam Jaya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512024/ https://www.ncbi.nlm.nih.gov/pubmed/34640971 http://dx.doi.org/10.3390/s21196652 |
Ejemplares similares
-
SCovNet: A skip connection-based feature union deep learning technique with statistical approach analysis for the detection of COVID-19
por: Patro, Kiran Kumar, et al.
Publicado: (2023) -
Real-Time Hand Gesture Recognition Using Fine-Tuned Convolutional Neural Network
por: Sahoo, Jaya Prakash, et al.
Publicado: (2022) -
An effective correlation-based data modeling framework for automatic diabetes prediction using machine and deep learning techniques
por: Patro, Kiran Kumar, et al.
Publicado: (2023) -
Human Activity Recognition Using Inertial Sensors in a Smartphone: An Overview
por: Sousa Lima, Wesllen, et al.
Publicado: (2019) -
Human Activity Recognition for Indoor Localization Using Smartphone Inertial Sensors
por: Moreira, Dinis, et al.
Publicado: (2021)