Cargando…
A Class-Imbalanced Deep Learning Fall Detection Algorithm Using Wearable Sensors
Falling represents one of the most serious health risks for elderly people; it may cause irreversible injuries if the individual cannot obtain timely treatment after the fall happens. Therefore, timely and accurate fall detection algorithm research is extremely important. Recently, a number of resea...
Autores principales: | Zhang, Jing, Li, Jia, Wang, Weibing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512051/ https://www.ncbi.nlm.nih.gov/pubmed/34640830 http://dx.doi.org/10.3390/s21196511 |
Ejemplares similares
-
A Study of One-Class Classification Algorithms for Wearable Fall Sensors
por: Santoyo-Ramón, José Antonio, et al.
Publicado: (2021) -
Detecting Falls with Wearable Sensors Using Machine Learning Techniques
por: Özdemir, Ahmet Turan, et al.
Publicado: (2014) -
Survey on Fall Detection and Fall Prevention Using Wearable and External Sensors
por: Delahoz, Yueng Santiago, et al.
Publicado: (2014) -
Class-Aware Fish Species Recognition Using Deep Learning for an Imbalanced Dataset
por: Alaba, Simegnew Yihunie, et al.
Publicado: (2022) -
A dataset for the development and optimization of fall detection algorithms based on wearable sensors
por: Cotechini, Valentina, et al.
Publicado: (2019)