Cargando…
An Incremental Class-Learning Approach with Acoustic Novelty Detection for Acoustic Event Recognition
Acoustic scene analysis (ASA) relies on the dynamic sensing and understanding of stationary and non-stationary sounds from various events, background noises and human actions with objects. However, the spatio-temporal nature of the sound signals may not be stationary, and novel events may exist that...
Autores principales: | Bayram, Barış, İnce, Gökhan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512090/ https://www.ncbi.nlm.nih.gov/pubmed/34640943 http://dx.doi.org/10.3390/s21196622 |
Ejemplares similares
-
Deep Recurrent Neural Network-Based Autoencoders for Acoustic Novelty Detection
por: Marchi, Erik, et al.
Publicado: (2017) -
Acoustic modeling for emotion recognition
por: Anne, Koteswara Rao, et al.
Publicado: (2015) -
Separating acoustic deviance from novelty during the first year of life: a review of event-related potential evidence
por: Kushnerenko, Elena V., et al.
Publicado: (2013) -
Event Detection for Distributed Acoustic Sensing: Combining Knowledge-Based, Classical Machine Learning, and Deep Learning Approaches
por: Bublin, Mugdim
Publicado: (2021) -
Wireless Sensor Networks for Noise Measurement and Acoustic Event Recognitions in Urban Environments
por: Luo, Liyan, et al.
Publicado: (2020)