Cargando…
A Hierarchical Approach to Activity Recognition and Fall Detection Using Wavelets and Adaptive Pooling
Human activity recognition has been a key study topic in the development of cyber physical systems and assisted living applications. In particular, inertial sensor based systems have become increasingly popular because they do not restrict users’ movement and are also relatively simple to implement...
Autores principales: | Syed, Abbas Shah, Sierra-Sosa, Daniel, Kumar, Anup, Elmaghraby, Adel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512095/ https://www.ncbi.nlm.nih.gov/pubmed/34640974 http://dx.doi.org/10.3390/s21196653 |
Ejemplares similares
-
A Deep Convolutional Neural Network-XGB for Direction and Severity Aware Fall Detection and Activity Recognition
por: Syed, Abbas Shah, et al.
Publicado: (2022) -
Making Cities Smarter—Optimization Problems for the IoT Enabled Smart City Development: A Mapping of Applications, Objectives, Constraints
por: Syed, Abbas Shah, et al.
Publicado: (2022) -
A Wavelet-Based Approach to Fall Detection
por: Palmerini, Luca, et al.
Publicado: (2015) -
Deep Learning Techniques for Speech Emotion Recognition, from Databases to Models
por: Abbaschian, Babak Joze, et al.
Publicado: (2021) -
A topic modeling framework for spatio-temporal information management
por: Asghari, Mohsen, et al.
Publicado: (2020)