Cargando…
A Muscle Fatigue Classification Model Based on LSTM and Improved Wavelet Packet Threshold
Previous studies have used the anaerobic threshold (AT) to non-invasively predict muscle fatigue. This study proposes a novel method for the automatic classification of muscle fatigue based on surface electromyography (sEMG). The sEMG data were acquired from 20 participants during an incremental tes...
Autores principales: | Wang, Junhong, Sun, Shaoming, Sun, Yining |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512101/ https://www.ncbi.nlm.nih.gov/pubmed/34640689 http://dx.doi.org/10.3390/s21196369 |
Ejemplares similares
-
Wavelet Packet Entropy for Heart Murmurs Classification
por: Safara, Fatemeh, et al.
Publicado: (2012) -
A New Hybrid Forecasting Model Based on SW-LSTM and Wavelet Packet Decomposition: A Case Study of Oil Futures Prices
por: Wang, Jie, et al.
Publicado: (2021) -
Wavelet packets and their statistical applications
por: Ahmad, Khalil, et al.
Publicado: (2018) -
Motor imagery classification method based on relative wavelet packet entropy brain network and improved lasso
por: Wang, Manqing, et al.
Publicado: (2023) -
An Improved Wavelet Packet-Chaos Model for Life Prediction of Space Relays Based on Volterra Series
por: Li, Lingling, et al.
Publicado: (2016)