Cargando…
Prediction of Geopolymer Concrete Compressive Strength Using Novel Machine Learning Algorithms
The innovation of geopolymer concrete (GPC) plays a vital role not only in reducing the environmental threat but also as an exceptional material for sustainable development. The application of supervised machine learning (ML) algorithms to forecast the mechanical properties of concrete also has a si...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512145/ https://www.ncbi.nlm.nih.gov/pubmed/34641204 http://dx.doi.org/10.3390/polym13193389 |
_version_ | 1784582920478916608 |
---|---|
author | Ahmad, Ayaz Ahmad, Waqas Chaiyasarn, Krisada Ostrowski, Krzysztof Adam Aslam, Fahid Zajdel, Paulina Joyklad, Panuwat |
author_facet | Ahmad, Ayaz Ahmad, Waqas Chaiyasarn, Krisada Ostrowski, Krzysztof Adam Aslam, Fahid Zajdel, Paulina Joyklad, Panuwat |
author_sort | Ahmad, Ayaz |
collection | PubMed |
description | The innovation of geopolymer concrete (GPC) plays a vital role not only in reducing the environmental threat but also as an exceptional material for sustainable development. The application of supervised machine learning (ML) algorithms to forecast the mechanical properties of concrete also has a significant role in developing the innovative environment in the field of civil engineering. This study was based on the use of the artificial neural network (ANN), boosting, and AdaBoost ML approaches, based on the python coding to predict the compressive strength (CS) of high calcium fly-ash-based GPC. The performance comparison of both the employed techniques in terms of prediction reveals that the ensemble ML approaches, AdaBoost, and boosting were more effective than the individual ML technique (ANN). The boosting indicates the highest value of R(2) equals 0.96, and AdaBoost gives 0.93, while the ANN model was less accurate, indicating the coefficient of determination value equals 0.87. The lesser values of the errors, MAE, MSE, and RMSE of the boosting technique give 1.69 MPa, 4.16 MPa, and 2.04 MPa, respectively, indicating the high accuracy of the boosting algorithm. However, the statistical check of the errors (MAE, MSE, RMSE) and k-fold cross-validation method confirms the high precision of the boosting technique. In addition, the sensitivity analysis was also introduced to evaluate the contribution level of the input parameters towards the prediction of CS of GPC. The better accuracy can be achieved by incorporating other ensemble ML techniques such as AdaBoost, bagging, and gradient boosting. |
format | Online Article Text |
id | pubmed-8512145 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85121452021-10-14 Prediction of Geopolymer Concrete Compressive Strength Using Novel Machine Learning Algorithms Ahmad, Ayaz Ahmad, Waqas Chaiyasarn, Krisada Ostrowski, Krzysztof Adam Aslam, Fahid Zajdel, Paulina Joyklad, Panuwat Polymers (Basel) Article The innovation of geopolymer concrete (GPC) plays a vital role not only in reducing the environmental threat but also as an exceptional material for sustainable development. The application of supervised machine learning (ML) algorithms to forecast the mechanical properties of concrete also has a significant role in developing the innovative environment in the field of civil engineering. This study was based on the use of the artificial neural network (ANN), boosting, and AdaBoost ML approaches, based on the python coding to predict the compressive strength (CS) of high calcium fly-ash-based GPC. The performance comparison of both the employed techniques in terms of prediction reveals that the ensemble ML approaches, AdaBoost, and boosting were more effective than the individual ML technique (ANN). The boosting indicates the highest value of R(2) equals 0.96, and AdaBoost gives 0.93, while the ANN model was less accurate, indicating the coefficient of determination value equals 0.87. The lesser values of the errors, MAE, MSE, and RMSE of the boosting technique give 1.69 MPa, 4.16 MPa, and 2.04 MPa, respectively, indicating the high accuracy of the boosting algorithm. However, the statistical check of the errors (MAE, MSE, RMSE) and k-fold cross-validation method confirms the high precision of the boosting technique. In addition, the sensitivity analysis was also introduced to evaluate the contribution level of the input parameters towards the prediction of CS of GPC. The better accuracy can be achieved by incorporating other ensemble ML techniques such as AdaBoost, bagging, and gradient boosting. MDPI 2021-10-02 /pmc/articles/PMC8512145/ /pubmed/34641204 http://dx.doi.org/10.3390/polym13193389 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ahmad, Ayaz Ahmad, Waqas Chaiyasarn, Krisada Ostrowski, Krzysztof Adam Aslam, Fahid Zajdel, Paulina Joyklad, Panuwat Prediction of Geopolymer Concrete Compressive Strength Using Novel Machine Learning Algorithms |
title | Prediction of Geopolymer Concrete Compressive Strength Using Novel Machine Learning Algorithms |
title_full | Prediction of Geopolymer Concrete Compressive Strength Using Novel Machine Learning Algorithms |
title_fullStr | Prediction of Geopolymer Concrete Compressive Strength Using Novel Machine Learning Algorithms |
title_full_unstemmed | Prediction of Geopolymer Concrete Compressive Strength Using Novel Machine Learning Algorithms |
title_short | Prediction of Geopolymer Concrete Compressive Strength Using Novel Machine Learning Algorithms |
title_sort | prediction of geopolymer concrete compressive strength using novel machine learning algorithms |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512145/ https://www.ncbi.nlm.nih.gov/pubmed/34641204 http://dx.doi.org/10.3390/polym13193389 |
work_keys_str_mv | AT ahmadayaz predictionofgeopolymerconcretecompressivestrengthusingnovelmachinelearningalgorithms AT ahmadwaqas predictionofgeopolymerconcretecompressivestrengthusingnovelmachinelearningalgorithms AT chaiyasarnkrisada predictionofgeopolymerconcretecompressivestrengthusingnovelmachinelearningalgorithms AT ostrowskikrzysztofadam predictionofgeopolymerconcretecompressivestrengthusingnovelmachinelearningalgorithms AT aslamfahid predictionofgeopolymerconcretecompressivestrengthusingnovelmachinelearningalgorithms AT zajdelpaulina predictionofgeopolymerconcretecompressivestrengthusingnovelmachinelearningalgorithms AT joykladpanuwat predictionofgeopolymerconcretecompressivestrengthusingnovelmachinelearningalgorithms |