Cargando…
Prediction of Geopolymer Concrete Compressive Strength Using Novel Machine Learning Algorithms
The innovation of geopolymer concrete (GPC) plays a vital role not only in reducing the environmental threat but also as an exceptional material for sustainable development. The application of supervised machine learning (ML) algorithms to forecast the mechanical properties of concrete also has a si...
Autores principales: | Ahmad, Ayaz, Ahmad, Waqas, Chaiyasarn, Krisada, Ostrowski, Krzysztof Adam, Aslam, Fahid, Zajdel, Paulina, Joyklad, Panuwat |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512145/ https://www.ncbi.nlm.nih.gov/pubmed/34641204 http://dx.doi.org/10.3390/polym13193389 |
Ejemplares similares
-
Application of Advanced Machine Learning Approaches to Predict the Compressive Strength of Concrete Containing Supplementary Cementitious Materials
por: Ahmad, Waqas, et al.
Publicado: (2021) -
Computation of High-Performance Concrete Compressive Strength Using Standalone and Ensembled Machine Learning Techniques
por: Xu, Yue, et al.
Publicado: (2021) -
Predicting the Mechanical Properties of RCA-Based Concrete Using Supervised Machine Learning Algorithms
por: Shang, Meijun, et al.
Publicado: (2022) -
Prediction of Compressive Strength of Fly Ash Based Concrete Using Individual and Ensemble Algorithm
por: Ahmad, Ayaz, et al.
Publicado: (2021) -
Finite Element Analysis of Glass Fiber-Reinforced Polymer-(GFRP) Reinforced Continuous Concrete Beams
por: Ahmad, Hazem, et al.
Publicado: (2021)