Cargando…
Sensor Selection Framework for Designing Fault Diagnostics System
In a world of rapidly changing technologies, reliance on complex engineered systems has become substantial. Interactions associated with such systems as well as associated manufacturing processes also continue to evolve and grow in complexity. Consider how the complexity of manufacturing processes m...
Autores principales: | Kulkarni, Amol, Terpenny, Janis, Prabhu, Vittaldas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512200/ https://www.ncbi.nlm.nih.gov/pubmed/34640789 http://dx.doi.org/10.3390/s21196470 |
Ejemplares similares
-
Leveraging Active Learning for Failure Mode Acquisition
por: Kulkarni, Amol, et al.
Publicado: (2023) -
Digital Twin for Training Bayesian Networks for Fault Diagnostics of Manufacturing Systems
por: Ademujimi, Toyosi, et al.
Publicado: (2022) -
Fusion-Learning of Bayesian Network Models for Fault Diagnostics
por: Ademujimi, Toyosi, et al.
Publicado: (2021) -
Integrated Diagnostic Framework for Process and Sensor Faults in Chemical Industry
por: Zhang, Jiaxin, et al.
Publicado: (2021) -
Sensor Fault Diagnostics Using Physics-Informed Transfer Learning Framework
por: Guc, Furkan, et al.
Publicado: (2022)