Cargando…
An Efficient Closed Form Solution to the Absolute Orientation Problem for Camera with Unknown Focal Length
In this paper we propose an efficient closed form solution to the absolute orientation problem for cameras with an unknown focal length, from two 2D–3D point correspondences and the camera position. The problem can be decomposed into two simple sub-problems and can be solved with angle constraints....
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512203/ https://www.ncbi.nlm.nih.gov/pubmed/34640798 http://dx.doi.org/10.3390/s21196480 |
Sumario: | In this paper we propose an efficient closed form solution to the absolute orientation problem for cameras with an unknown focal length, from two 2D–3D point correspondences and the camera position. The problem can be decomposed into two simple sub-problems and can be solved with angle constraints. A polynomial equation of one variable is solved to determine the focal length, and then a geometric approach is used to determine the absolute orientation. The geometric derivations are easy to understand and significantly improve performance. Rewriting the camera model with the known camera position leads to a simpler and more efficient closed form solution, and this gives a single solution, without the multi-solution phenomena of perspective-three-point (P3P) solvers. Experimental results demonstrated that our proposed method has a better performance in terms of numerical stability, noise sensitivity, and computational speed, with synthetic data and real images. |
---|