Cargando…
Deep Reinforcement Learning for Computation Offloading and Resource Allocation in Unmanned-Aerial-Vehicle Assisted Edge Computing
Computation offloading technology extends cloud computing to the edge of the access network close to users, bringing many benefits to terminal devices with limited battery and computational resources. Nevertheless, the existing computation offloading approaches are challenging to apply to specific s...
Autores principales: | Li, Shuyang, Hu, Xiaohui, Du, Yongwen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512227/ https://www.ncbi.nlm.nih.gov/pubmed/34640820 http://dx.doi.org/10.3390/s21196499 |
Ejemplares similares
-
Dynamic Resource Allocation and Computation Offloading for Edge Computing System
por: Chang, Zheng, et al.
Publicado: (2020) -
Resource Allocation and Computation Offloading for Wireless Powered Mobile Edge Computing
por: Chen, Jun, et al.
Publicado: (2022) -
Resource Allocation and Data Offloading Strategy for Edge-Computing-Assisted Intelligent Telemedicine System
por: Li, Yan, et al.
Publicado: (2023) -
Task Offloading and Resource Allocation Strategy Based on Deep Learning for Mobile Edge Computing
por: Yu, Zijia, et al.
Publicado: (2022) -
Resource Allocation in Unmanned Aerial Vehicle (UAV)-Assisted Wireless-Powered Internet of Things
por: Liu, Bingjie, et al.
Publicado: (2019)