Cargando…
Learning Hierarchical Representations with Spike-and-Slab Inception Network
Recently, deep convolutional neural networks (CNN) with inception modules have attracted much attention due to their excellent performances on diverse domains. Nevertheless, the basic CNN can only capture a univariate feature, which is essentially linear. It leads to a weak ability in feature expres...
Autores principales: | Qiao, Weizheng, Bi, Xiaojun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512231/ https://www.ncbi.nlm.nih.gov/pubmed/34640708 http://dx.doi.org/10.3390/s21196382 |
Ejemplares similares
-
A hierarchical spike-and-slab model for pan-cancer survival using pan-omic data
por: Samorodnitsky, Sarah, et al.
Publicado: (2022) -
Nonlinear Spike-And-Slab Sparse Coding for Interpretable Image Encoding
por: Shelton, Jacquelyn A., et al.
Publicado: (2015) -
Poincaré Embeddings for Learning Hierarchical Representations
por: Nickel, Maximilian
Publicado: (2018) -
Conjoint Feature Representation of GO and Protein Sequence for PPI Prediction Based on an Inception RNN Attention Network
por: Zhao, Lingling, et al.
Publicado: (2020) -
The spike-and-slab elastic net as a classification tool in Alzheimer’s disease
por: Leach, Justin M., et al.
Publicado: (2022)