Cargando…
Automatic Prediction of Ischemia-Reperfusion Injury of Small Intestine Using Convolutional Neural Networks: A Pilot Study
Acute intestinal ischemia is a life-threatening condition. The current gold standard, with evaluation based on visual and tactile sensation, has low specificity. In this study, we explore the feasibility of using machine learning models on images of the intestine, to assess small intestinal viabilit...
Autores principales: | Hou, Jie, Strand-Amundsen, Runar, Tronstad, Christian, Høgetveit, Jan Olav, Martinsen, Ørjan Grøttem, Tønnessen, Tor Inge |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512235/ https://www.ncbi.nlm.nih.gov/pubmed/34641009 http://dx.doi.org/10.3390/s21196691 |
Ejemplares similares
-
Small intestinal viability assessment using dielectric relaxation spectroscopy and deep learning
por: Hou, Jie, et al.
Publicado: (2022) -
Utilization of dielectric properties for assessment of liver ischemia-reperfusion injury in vivo and during machine perfusion
por: Hou, Jie, et al.
Publicado: (2022) -
Assessment of Intestinal Ischemia–Reperfusion Injury Using Diffuse Reflectance VIS-NIR Spectroscopy and Histology
por: Hou, Jie, et al.
Publicado: (2022) -
Assessing Ischemic Injury in Human Intestine Ex Vivo with Electrical Impedance Spectroscopy
por: Hou, Jie, et al.
Publicado: (2021) -
Ischemia/reperfusion injury in porcine intestine - Viability assessment
por: Strand-Amundsen, Runar J, et al.
Publicado: (2018)