Cargando…
A Look at the Spatial Confining Effect on the Molecular Electrostatic Potential (MEP)—A Case Study of the HF and BrCN Molecules
In this theoretical study, we report on the molecular electrostatic potential (MEP) of titled molecules confined by repulsive potentials of cylindrical symmetry mimicking a topology. Our calculations show that the spatial restriction significantly changes the picture of the MEP of molecules in a qua...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512269/ https://www.ncbi.nlm.nih.gov/pubmed/34641468 http://dx.doi.org/10.3390/molecules26195924 |
Sumario: | In this theoretical study, we report on the molecular electrostatic potential (MEP) of titled molecules confined by repulsive potentials of cylindrical symmetry mimicking a topology. Our calculations show that the spatial restriction significantly changes the picture of the MEP of molecules in a quantitative and qualitative sense. In particular, the drastic changes in the MEP as a function of the strength of spatial confinement are observed for the BrCN molecule. This preliminary study is the first step in the investigation of the behavior of the MEP of molecular systems under orbital compression. |
---|