Cargando…

Esterification of Alginate with Alkyl Bromides of Different Carbon Chain Lengths via the Bimolecular Nucleophilic Substitution Reaction: Synthesis, Characterization, and Controlled Release Performance

To extend the alginate applicability for the sustained release of hydrophobic medicine in drug delivery systems, the alkyl alginate ester derivative (AAD), including hexyl alginate ester derivative (HAD), octyl alginate ester derivative (OAD), decyl alginate ester derivative (DAD), and lauryl algina...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Xiuqiong, Zhu, Qingmei, Liu, Chang, Li, Dongze, Yan, Huiqiong, Lin, Qiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512272/
https://www.ncbi.nlm.nih.gov/pubmed/34641167
http://dx.doi.org/10.3390/polym13193351
_version_ 1784582951469580288
author Chen, Xiuqiong
Zhu, Qingmei
Liu, Chang
Li, Dongze
Yan, Huiqiong
Lin, Qiang
author_facet Chen, Xiuqiong
Zhu, Qingmei
Liu, Chang
Li, Dongze
Yan, Huiqiong
Lin, Qiang
author_sort Chen, Xiuqiong
collection PubMed
description To extend the alginate applicability for the sustained release of hydrophobic medicine in drug delivery systems, the alkyl alginate ester derivative (AAD), including hexyl alginate ester derivative (HAD), octyl alginate ester derivative (OAD), decyl alginate ester derivative (DAD), and lauryl alginate ester derivative (LAD), were synthesized using the alkyl bromides with different lengths of carbon chain as the hydrophobic modifiers under homogeneous conditions via the bimolecular nucleophilic substitution (S(N)2) reaction. Experimental results revealed that the successful grafting of the hydrophobic alkyl groups onto the alginate molecular backbone via the S(N)2 reaction had weakened and destroyed the intramolecular hydrogen bonds, thus enhancing the molecular flexibility of the alginate, which endowed the AAD with a good amphiphilic property and a critical aggregation concentration (CAC) of 0.48~0.0068 g/L. Therefore, the resultant AAD could form stable spherical self-aggregated micelles with the average hydrodynamic diameter of 285.3~180.5 nm and zeta potential at approximately −44.8~−34.4 mV due to the intra or intermolecular hydrophobic associations. With the increase of the carbon chain length of the hydrophobic side groups, the AAD was more prone to self-aggregation, and therefore was able to achieve the loading and sustained release of hydrophobic ibuprofen. Additionally, the swelling and degradation of AAD microcapsules and the diffusion of the loaded drug jointly controlled the release rate of ibuprofen. Meanwhile, the AAD also displayed low cytotoxicity to the murine macrophage RAW264.7 cells. Thanks to the good amphiphilic property, colloidal interface activity, hydrophobic drug-loading performance, and cytocompatibility, the synthesized AAD exhibited a great potential for the development of hydrophobic pharmaceutical formulations.
format Online
Article
Text
id pubmed-8512272
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-85122722021-10-14 Esterification of Alginate with Alkyl Bromides of Different Carbon Chain Lengths via the Bimolecular Nucleophilic Substitution Reaction: Synthesis, Characterization, and Controlled Release Performance Chen, Xiuqiong Zhu, Qingmei Liu, Chang Li, Dongze Yan, Huiqiong Lin, Qiang Polymers (Basel) Article To extend the alginate applicability for the sustained release of hydrophobic medicine in drug delivery systems, the alkyl alginate ester derivative (AAD), including hexyl alginate ester derivative (HAD), octyl alginate ester derivative (OAD), decyl alginate ester derivative (DAD), and lauryl alginate ester derivative (LAD), were synthesized using the alkyl bromides with different lengths of carbon chain as the hydrophobic modifiers under homogeneous conditions via the bimolecular nucleophilic substitution (S(N)2) reaction. Experimental results revealed that the successful grafting of the hydrophobic alkyl groups onto the alginate molecular backbone via the S(N)2 reaction had weakened and destroyed the intramolecular hydrogen bonds, thus enhancing the molecular flexibility of the alginate, which endowed the AAD with a good amphiphilic property and a critical aggregation concentration (CAC) of 0.48~0.0068 g/L. Therefore, the resultant AAD could form stable spherical self-aggregated micelles with the average hydrodynamic diameter of 285.3~180.5 nm and zeta potential at approximately −44.8~−34.4 mV due to the intra or intermolecular hydrophobic associations. With the increase of the carbon chain length of the hydrophobic side groups, the AAD was more prone to self-aggregation, and therefore was able to achieve the loading and sustained release of hydrophobic ibuprofen. Additionally, the swelling and degradation of AAD microcapsules and the diffusion of the loaded drug jointly controlled the release rate of ibuprofen. Meanwhile, the AAD also displayed low cytotoxicity to the murine macrophage RAW264.7 cells. Thanks to the good amphiphilic property, colloidal interface activity, hydrophobic drug-loading performance, and cytocompatibility, the synthesized AAD exhibited a great potential for the development of hydrophobic pharmaceutical formulations. MDPI 2021-09-30 /pmc/articles/PMC8512272/ /pubmed/34641167 http://dx.doi.org/10.3390/polym13193351 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Chen, Xiuqiong
Zhu, Qingmei
Liu, Chang
Li, Dongze
Yan, Huiqiong
Lin, Qiang
Esterification of Alginate with Alkyl Bromides of Different Carbon Chain Lengths via the Bimolecular Nucleophilic Substitution Reaction: Synthesis, Characterization, and Controlled Release Performance
title Esterification of Alginate with Alkyl Bromides of Different Carbon Chain Lengths via the Bimolecular Nucleophilic Substitution Reaction: Synthesis, Characterization, and Controlled Release Performance
title_full Esterification of Alginate with Alkyl Bromides of Different Carbon Chain Lengths via the Bimolecular Nucleophilic Substitution Reaction: Synthesis, Characterization, and Controlled Release Performance
title_fullStr Esterification of Alginate with Alkyl Bromides of Different Carbon Chain Lengths via the Bimolecular Nucleophilic Substitution Reaction: Synthesis, Characterization, and Controlled Release Performance
title_full_unstemmed Esterification of Alginate with Alkyl Bromides of Different Carbon Chain Lengths via the Bimolecular Nucleophilic Substitution Reaction: Synthesis, Characterization, and Controlled Release Performance
title_short Esterification of Alginate with Alkyl Bromides of Different Carbon Chain Lengths via the Bimolecular Nucleophilic Substitution Reaction: Synthesis, Characterization, and Controlled Release Performance
title_sort esterification of alginate with alkyl bromides of different carbon chain lengths via the bimolecular nucleophilic substitution reaction: synthesis, characterization, and controlled release performance
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512272/
https://www.ncbi.nlm.nih.gov/pubmed/34641167
http://dx.doi.org/10.3390/polym13193351
work_keys_str_mv AT chenxiuqiong esterificationofalginatewithalkylbromidesofdifferentcarbonchainlengthsviathebimolecularnucleophilicsubstitutionreactionsynthesischaracterizationandcontrolledreleaseperformance
AT zhuqingmei esterificationofalginatewithalkylbromidesofdifferentcarbonchainlengthsviathebimolecularnucleophilicsubstitutionreactionsynthesischaracterizationandcontrolledreleaseperformance
AT liuchang esterificationofalginatewithalkylbromidesofdifferentcarbonchainlengthsviathebimolecularnucleophilicsubstitutionreactionsynthesischaracterizationandcontrolledreleaseperformance
AT lidongze esterificationofalginatewithalkylbromidesofdifferentcarbonchainlengthsviathebimolecularnucleophilicsubstitutionreactionsynthesischaracterizationandcontrolledreleaseperformance
AT yanhuiqiong esterificationofalginatewithalkylbromidesofdifferentcarbonchainlengthsviathebimolecularnucleophilicsubstitutionreactionsynthesischaracterizationandcontrolledreleaseperformance
AT linqiang esterificationofalginatewithalkylbromidesofdifferentcarbonchainlengthsviathebimolecularnucleophilicsubstitutionreactionsynthesischaracterizationandcontrolledreleaseperformance