Cargando…

Fabrication and Characterization of Composite Biofilm of Konjac Glucomannan/Sodium Lignosulfonate/ε-Polylysine with Reinforced Mechanical Strength and Antibacterial Ability

In order to enforce the mechanical strength and antibacterial ability of biofilm and explore the underlying mechanism, sodium lignosulfonate (SL) and ε-polylysine (ε-PL) were introduced to fabricate the composite film of konjac glucomannan (KGM)/SL/ε-PL in the present study. According to our previou...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Xiaowei, Pang, Jie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512274/
https://www.ncbi.nlm.nih.gov/pubmed/34641178
http://dx.doi.org/10.3390/polym13193367
_version_ 1784582951965556736
author Xu, Xiaowei
Pang, Jie
author_facet Xu, Xiaowei
Pang, Jie
author_sort Xu, Xiaowei
collection PubMed
description In order to enforce the mechanical strength and antibacterial ability of biofilm and explore the underlying mechanism, sodium lignosulfonate (SL) and ε-polylysine (ε-PL) were introduced to fabricate the composite film of konjac glucomannan (KGM)/SL/ε-PL in the present study. According to our previous method, 1% (w/v) of KGM was the optimal concentration for the film preparation method, on the basis of which the amount of SL and ε-PL were screened by mechanical properties enforcement of film. The structure, mechanical performance and thermal stability of the film were characterized by SEM, FTIR, TGA and tensile strength tests. The optimized composite film was comprised of KGM 1% (w/v), SL 0.2% (w/v), and ε-PL 0.375% (w/v). The tensile strength (105.97 ± 4.58 MPa, p < 0.05) and elongation at break (95.71 ± 5.02%, p < 0.05) of the KGM/SL/ε-PL composite film was greatly improved compared with that of KGM. Meanwhile, the thermal stability and antibacterial property of film were also enhanced by the presence of SL and ε-PL. In co-culturation mode, the KGM/SL/ε-PL composite film showed good inhibitory effect on Escherichia coli (22.50 ± 0.31 mm, p < 0.05) and Staphylococcus aureus (19.69 ± 0.36 mm, p < 0.05) by determining the inhibition zone diameter. It was revealed that KGM/SL/ε-PL composite film shows enhanced mechanical strength and reliable antibacterial activities and it could be a potential candidate in the field of food packaging.
format Online
Article
Text
id pubmed-8512274
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-85122742021-10-14 Fabrication and Characterization of Composite Biofilm of Konjac Glucomannan/Sodium Lignosulfonate/ε-Polylysine with Reinforced Mechanical Strength and Antibacterial Ability Xu, Xiaowei Pang, Jie Polymers (Basel) Article In order to enforce the mechanical strength and antibacterial ability of biofilm and explore the underlying mechanism, sodium lignosulfonate (SL) and ε-polylysine (ε-PL) were introduced to fabricate the composite film of konjac glucomannan (KGM)/SL/ε-PL in the present study. According to our previous method, 1% (w/v) of KGM was the optimal concentration for the film preparation method, on the basis of which the amount of SL and ε-PL were screened by mechanical properties enforcement of film. The structure, mechanical performance and thermal stability of the film were characterized by SEM, FTIR, TGA and tensile strength tests. The optimized composite film was comprised of KGM 1% (w/v), SL 0.2% (w/v), and ε-PL 0.375% (w/v). The tensile strength (105.97 ± 4.58 MPa, p < 0.05) and elongation at break (95.71 ± 5.02%, p < 0.05) of the KGM/SL/ε-PL composite film was greatly improved compared with that of KGM. Meanwhile, the thermal stability and antibacterial property of film were also enhanced by the presence of SL and ε-PL. In co-culturation mode, the KGM/SL/ε-PL composite film showed good inhibitory effect on Escherichia coli (22.50 ± 0.31 mm, p < 0.05) and Staphylococcus aureus (19.69 ± 0.36 mm, p < 0.05) by determining the inhibition zone diameter. It was revealed that KGM/SL/ε-PL composite film shows enhanced mechanical strength and reliable antibacterial activities and it could be a potential candidate in the field of food packaging. MDPI 2021-09-30 /pmc/articles/PMC8512274/ /pubmed/34641178 http://dx.doi.org/10.3390/polym13193367 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Xu, Xiaowei
Pang, Jie
Fabrication and Characterization of Composite Biofilm of Konjac Glucomannan/Sodium Lignosulfonate/ε-Polylysine with Reinforced Mechanical Strength and Antibacterial Ability
title Fabrication and Characterization of Composite Biofilm of Konjac Glucomannan/Sodium Lignosulfonate/ε-Polylysine with Reinforced Mechanical Strength and Antibacterial Ability
title_full Fabrication and Characterization of Composite Biofilm of Konjac Glucomannan/Sodium Lignosulfonate/ε-Polylysine with Reinforced Mechanical Strength and Antibacterial Ability
title_fullStr Fabrication and Characterization of Composite Biofilm of Konjac Glucomannan/Sodium Lignosulfonate/ε-Polylysine with Reinforced Mechanical Strength and Antibacterial Ability
title_full_unstemmed Fabrication and Characterization of Composite Biofilm of Konjac Glucomannan/Sodium Lignosulfonate/ε-Polylysine with Reinforced Mechanical Strength and Antibacterial Ability
title_short Fabrication and Characterization of Composite Biofilm of Konjac Glucomannan/Sodium Lignosulfonate/ε-Polylysine with Reinforced Mechanical Strength and Antibacterial Ability
title_sort fabrication and characterization of composite biofilm of konjac glucomannan/sodium lignosulfonate/ε-polylysine with reinforced mechanical strength and antibacterial ability
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512274/
https://www.ncbi.nlm.nih.gov/pubmed/34641178
http://dx.doi.org/10.3390/polym13193367
work_keys_str_mv AT xuxiaowei fabricationandcharacterizationofcompositebiofilmofkonjacglucomannansodiumlignosulfonateepolylysinewithreinforcedmechanicalstrengthandantibacterialability
AT pangjie fabricationandcharacterizationofcompositebiofilmofkonjacglucomannansodiumlignosulfonateepolylysinewithreinforcedmechanicalstrengthandantibacterialability