Cargando…
Fuzzy Overclustering: Semi-Supervised Classification of Fuzzy Labels with Overclustering and Inverse Cross-Entropy
Deep learning has been successfully applied to many classification problems including underwater challenges. However, a long-standing issue with deep learning is the need for large and consistently labeled datasets. Although current approaches in semi-supervised learning can decrease the required am...
Autores principales: | Schmarje, Lars, Brünger, Johannes, Santarossa, Monty, Schröder, Simon-Martin, Kiko, Rainer, Koch, Reinhard |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512301/ https://www.ncbi.nlm.nih.gov/pubmed/34640981 http://dx.doi.org/10.3390/s21196661 |
Ejemplares similares
-
Entropy and Semi-Entropies of LR Fuzzy Numbers’ Linear Function with Applications to Fuzzy Programming
por: Zhou, Jian, et al.
Publicado: (2019) -
Semi-Supervised Fuzzy Clustering with Feature Discrimination
por: Li, Longlong, et al.
Publicado: (2015) -
Centered and Averaged Fuzzy Entropy to Improve Fuzzy Entropy Precision
por: Girault, Jean-Marc, et al.
Publicado: (2018) -
RFFE – Random Forest Fuzzy Entropy for the classification of Diabetes Mellitus
por: Usha Ruby, A., et al.
Publicado: (2023) -
A New Validity Index Based on Fuzzy Energy and Fuzzy Entropy Measures in Fuzzy Clustering Problems
por: Martino, Ferdinando Di, et al.
Publicado: (2020)