Cargando…
Hyperspectral Image Classification Using Deep Genome Graph-Based Approach
Recently developed hybrid models that stack 3D with 2D CNN in their structure have enjoyed high popularity due to their appealing performance in hyperspectral image classification tasks. On the other hand, biological genome graphs have demonstrated their effectiveness in enhancing the scalability an...
Autores principales: | Tinega, Haron, Chen, Enqing, Ma, Long, Mariita, Richard M., Nyasaka, Divinah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512338/ https://www.ncbi.nlm.nih.gov/pubmed/34640786 http://dx.doi.org/10.3390/s21196467 |
Ejemplares similares
-
Spatial–Spectral Constrained Adaptive Graph for Hyperspectral Image Clustering
por: Zhu, Xing-Hui, et al.
Publicado: (2022) -
Blood Stain Classification with Hyperspectral Imaging and Deep Neural Networks
por: Książek, Kamil, et al.
Publicado: (2020) -
Pairwise Elastic Net Representation-Based Classification for Hyperspectral Image Classification
por: Li, Hao, et al.
Publicado: (2021) -
A Robust Context-Based Deep Learning Approach for Highly Imbalanced Hyperspectral Classification
por: Ramirez Rochac, Juan F., et al.
Publicado: (2021) -
Graph Convolutional Network Using Adaptive Neighborhood Laplacian Matrix for Hyperspectral Images with Application to Rice Seed Image Classification
por: Orozco, Jairo, et al.
Publicado: (2023)