Cargando…

Design, Synthesis, and Antibacterial Evaluation of Novel Ocotillol Derivatives and Their Synergistic Effects with Conventional Antibiotics

The improper use of antibiotics has led to the development of bacterial resistance, resulting in fewer antibiotics for many bacterial infections. Especially, the drug resistance of hospital-acquired methicillin-resistant Staphylococcus aureus (HA-MRSA) is distinctly serious. This research designed a...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Doudou, Cao, Yucheng, Wang, Kaiyi, Shi, Zhuoyue, Wang, Ruodong, Meng, Qingguo, Bi, Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512374/
https://www.ncbi.nlm.nih.gov/pubmed/34641512
http://dx.doi.org/10.3390/molecules26195969
Descripción
Sumario:The improper use of antibiotics has led to the development of bacterial resistance, resulting in fewer antibiotics for many bacterial infections. Especially, the drug resistance of hospital-acquired methicillin-resistant Staphylococcus aureus (HA-MRSA) is distinctly serious. This research designed and synthesized two series of 3-substituted ocotillol derivatives in order to improve their anti-HA-MRSA potency and synergistic antibacterial activity. Among the synthesized compounds, 20–31 showed minimum inhibitory concentration (MIC) values of 1–64 µg/mL in vitro against HA-MRSA 18–19, 18–20, and S. aureus ATCC29213. Compound 21 showed the best antibacterial activity, with an MIC of 1 μg/mL and had synergistic inhibitory effects. The fractional inhibitory concentration index (FICI) value was 0.375, when combined with chloramphenicol (CHL) or kanamycin (KAN). The structure–activity relationships (SARs) of ocotillol-type derivatives were also summarized. Compound 21 has the potential to be developed as a novel antibacterial agent or potentiator against HA-MRSA.