Cargando…
Ultrahigh Sensitivity Mach−Zehnder Interferometer Sensor Based on a Weak One-Dimensional Field Confinement Silica Waveguide
We report a novel Mach−Zehnder interferometer (MZI) sensor that utilizes a weak one-dimensional field confinement silica waveguide (WCSW). The WCSW has a large horizontal and vertical aspect ratio and low refractive index difference, which features easy preparation and a large evanescent field for a...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512376/ https://www.ncbi.nlm.nih.gov/pubmed/34640918 http://dx.doi.org/10.3390/s21196600 |
Sumario: | We report a novel Mach−Zehnder interferometer (MZI) sensor that utilizes a weak one-dimensional field confinement silica waveguide (WCSW). The WCSW has a large horizontal and vertical aspect ratio and low refractive index difference, which features easy preparation and a large evanescent field for achieving high waveguide sensitivity. We experimentally achieved WCSW ultrahigh waveguide sensitivity of 0.94, MZI sensitivity of 44,364 π/RIU and a low limit of detection (LOD) of 6.1 × 10(−7) RIU. |
---|