Cargando…

In Vitro Degradation and Cytotoxicity of Eggshell-Based Hydroxyapatite: A Systematic Review and Meta-Analysis

Objective: This review focuses on the in vitro degradation of eggshell-based hydroxyapatite for analyzing the weight loss of hydroxyapatite when applied in the human body. Cytotoxicity tests were used to observe cell growth and morphological effects. A systematic review and meta-analysis were conduc...

Descripción completa

Detalles Bibliográficos
Autores principales: Rohmadi, Rohmadi, Harwijayanti, Widyanita, Ubaidillah, Ubaidillah, Triyono, Joko, Diharjo, Kuncoro, Utomo, Pamudji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512377/
https://www.ncbi.nlm.nih.gov/pubmed/34641039
http://dx.doi.org/10.3390/polym13193223
_version_ 1784582976268402688
author Rohmadi, Rohmadi
Harwijayanti, Widyanita
Ubaidillah, Ubaidillah
Triyono, Joko
Diharjo, Kuncoro
Utomo, Pamudji
author_facet Rohmadi, Rohmadi
Harwijayanti, Widyanita
Ubaidillah, Ubaidillah
Triyono, Joko
Diharjo, Kuncoro
Utomo, Pamudji
author_sort Rohmadi, Rohmadi
collection PubMed
description Objective: This review focuses on the in vitro degradation of eggshell-based hydroxyapatite for analyzing the weight loss of hydroxyapatite when applied in the human body. Cytotoxicity tests were used to observe cell growth and morphological effects. A systematic review and meta-analysis were conducted to observe the weight loss and viable cells of hydroxyapatite when used for implants. Method: Based on the Population, Intervention, Comparison, and Outcome (PICO) strategy, the articles used for literature review were published in English on SCOPUS, PubMed, and Google Scholar from 1 January 2012 to 22 May 2021. Data regarding existing experiments in the literature articles the in vitro degradation and cytotoxicity testing of eggshell-based hydroxyapatite determined the biocompatibility of the materials. A meta-analysis was conducted to calculate the mean difference between the solutions and soaking times used for degradation and the stem cells used for cytotoxicity. Results: From 231 relevant studies, 71 were chosen for full-text analysis, out of which 33 articles met the inclusion criteria for degradation and cytotoxicity analysis. A manual search of the field of study resulted in three additional articles. Thus, 36 articles were included in this systematic review. Significance: The aim of this study was to highlight the importance of the biocompatibility of eggshell-based hydroxyapatite. The weight loss and viability cells of eggshell-based hydroxyapatite showed optimum results for viable cells requirements above 70%, and there is a weight loss of eggshell-based hydroxyapatite for a material implant. The meta-analysis indicated significant differences in the weight loss of eggshell-based hydroxyapatite materials with different soaking times and solutions used. The various kinds of stem cells for incubation of cultured cells in contact with a device, either directly or through diffusions with various kinds of stem cells from animals and humans, yielded viability cells above 70%.
format Online
Article
Text
id pubmed-8512377
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-85123772021-10-14 In Vitro Degradation and Cytotoxicity of Eggshell-Based Hydroxyapatite: A Systematic Review and Meta-Analysis Rohmadi, Rohmadi Harwijayanti, Widyanita Ubaidillah, Ubaidillah Triyono, Joko Diharjo, Kuncoro Utomo, Pamudji Polymers (Basel) Review Objective: This review focuses on the in vitro degradation of eggshell-based hydroxyapatite for analyzing the weight loss of hydroxyapatite when applied in the human body. Cytotoxicity tests were used to observe cell growth and morphological effects. A systematic review and meta-analysis were conducted to observe the weight loss and viable cells of hydroxyapatite when used for implants. Method: Based on the Population, Intervention, Comparison, and Outcome (PICO) strategy, the articles used for literature review were published in English on SCOPUS, PubMed, and Google Scholar from 1 January 2012 to 22 May 2021. Data regarding existing experiments in the literature articles the in vitro degradation and cytotoxicity testing of eggshell-based hydroxyapatite determined the biocompatibility of the materials. A meta-analysis was conducted to calculate the mean difference between the solutions and soaking times used for degradation and the stem cells used for cytotoxicity. Results: From 231 relevant studies, 71 were chosen for full-text analysis, out of which 33 articles met the inclusion criteria for degradation and cytotoxicity analysis. A manual search of the field of study resulted in three additional articles. Thus, 36 articles were included in this systematic review. Significance: The aim of this study was to highlight the importance of the biocompatibility of eggshell-based hydroxyapatite. The weight loss and viability cells of eggshell-based hydroxyapatite showed optimum results for viable cells requirements above 70%, and there is a weight loss of eggshell-based hydroxyapatite for a material implant. The meta-analysis indicated significant differences in the weight loss of eggshell-based hydroxyapatite materials with different soaking times and solutions used. The various kinds of stem cells for incubation of cultured cells in contact with a device, either directly or through diffusions with various kinds of stem cells from animals and humans, yielded viability cells above 70%. MDPI 2021-09-23 /pmc/articles/PMC8512377/ /pubmed/34641039 http://dx.doi.org/10.3390/polym13193223 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Rohmadi, Rohmadi
Harwijayanti, Widyanita
Ubaidillah, Ubaidillah
Triyono, Joko
Diharjo, Kuncoro
Utomo, Pamudji
In Vitro Degradation and Cytotoxicity of Eggshell-Based Hydroxyapatite: A Systematic Review and Meta-Analysis
title In Vitro Degradation and Cytotoxicity of Eggshell-Based Hydroxyapatite: A Systematic Review and Meta-Analysis
title_full In Vitro Degradation and Cytotoxicity of Eggshell-Based Hydroxyapatite: A Systematic Review and Meta-Analysis
title_fullStr In Vitro Degradation and Cytotoxicity of Eggshell-Based Hydroxyapatite: A Systematic Review and Meta-Analysis
title_full_unstemmed In Vitro Degradation and Cytotoxicity of Eggshell-Based Hydroxyapatite: A Systematic Review and Meta-Analysis
title_short In Vitro Degradation and Cytotoxicity of Eggshell-Based Hydroxyapatite: A Systematic Review and Meta-Analysis
title_sort in vitro degradation and cytotoxicity of eggshell-based hydroxyapatite: a systematic review and meta-analysis
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512377/
https://www.ncbi.nlm.nih.gov/pubmed/34641039
http://dx.doi.org/10.3390/polym13193223
work_keys_str_mv AT rohmadirohmadi invitrodegradationandcytotoxicityofeggshellbasedhydroxyapatiteasystematicreviewandmetaanalysis
AT harwijayantiwidyanita invitrodegradationandcytotoxicityofeggshellbasedhydroxyapatiteasystematicreviewandmetaanalysis
AT ubaidillahubaidillah invitrodegradationandcytotoxicityofeggshellbasedhydroxyapatiteasystematicreviewandmetaanalysis
AT triyonojoko invitrodegradationandcytotoxicityofeggshellbasedhydroxyapatiteasystematicreviewandmetaanalysis
AT diharjokuncoro invitrodegradationandcytotoxicityofeggshellbasedhydroxyapatiteasystematicreviewandmetaanalysis
AT utomopamudji invitrodegradationandcytotoxicityofeggshellbasedhydroxyapatiteasystematicreviewandmetaanalysis