Cargando…
Modeling Brittle Fractures in Epoxy Nanocomposites Using Extended Finite Element and Cohesive Zone Surface Methods
Linear elastic fracture modeling coupled with empirical material tensile data result in good quantitative agreement with the experimental determination of mode I fracture for both brittle and toughened epoxy nanocomposites. The nanocomposites are comprised of diglycidyl ether of bisphenol A cured wi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512390/ https://www.ncbi.nlm.nih.gov/pubmed/34641202 http://dx.doi.org/10.3390/polym13193387 |
_version_ | 1784582979446636544 |
---|---|
author | Biswakarma, John J. S. Cruz, Dario A. Bain, Erich D. Dennis, Joseph M. Andzelm, Jan W. Lustig, Steven R. |
author_facet | Biswakarma, John J. S. Cruz, Dario A. Bain, Erich D. Dennis, Joseph M. Andzelm, Jan W. Lustig, Steven R. |
author_sort | Biswakarma, John J. S. |
collection | PubMed |
description | Linear elastic fracture modeling coupled with empirical material tensile data result in good quantitative agreement with the experimental determination of mode I fracture for both brittle and toughened epoxy nanocomposites. The nanocomposites are comprised of diglycidyl ether of bisphenol A cured with Jeffamine D-230 and some were filled with core-shell rubber nanoparticles of varying concentrations. The quasi-static single-edge notched bending (SENB) test is modeled using both the surface-based cohesive zone (CZS) and extended finite element methods (XFEM) implemented in the Abaqus software. For each material considered, the critical load predicted by the simulated SENB test is used to calculate the mode I fracture toughness. Damage initiates in these models when nodes at the simulated crack tip attain the experimentally measured yield stress. Prediction of fracture processes using a generalized truncated linear traction–separation law (TSL) was significantly improved by considering the case of a linear softening function. There are no adjustable parameters in the XFEM model. The CZS model requires only optimization of the element displacement at the fracture parameter. Thus, these continuum methods describe these materials in mode I fracture with a minimum number of independent parameters. |
format | Online Article Text |
id | pubmed-8512390 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85123902021-10-14 Modeling Brittle Fractures in Epoxy Nanocomposites Using Extended Finite Element and Cohesive Zone Surface Methods Biswakarma, John J. S. Cruz, Dario A. Bain, Erich D. Dennis, Joseph M. Andzelm, Jan W. Lustig, Steven R. Polymers (Basel) Article Linear elastic fracture modeling coupled with empirical material tensile data result in good quantitative agreement with the experimental determination of mode I fracture for both brittle and toughened epoxy nanocomposites. The nanocomposites are comprised of diglycidyl ether of bisphenol A cured with Jeffamine D-230 and some were filled with core-shell rubber nanoparticles of varying concentrations. The quasi-static single-edge notched bending (SENB) test is modeled using both the surface-based cohesive zone (CZS) and extended finite element methods (XFEM) implemented in the Abaqus software. For each material considered, the critical load predicted by the simulated SENB test is used to calculate the mode I fracture toughness. Damage initiates in these models when nodes at the simulated crack tip attain the experimentally measured yield stress. Prediction of fracture processes using a generalized truncated linear traction–separation law (TSL) was significantly improved by considering the case of a linear softening function. There are no adjustable parameters in the XFEM model. The CZS model requires only optimization of the element displacement at the fracture parameter. Thus, these continuum methods describe these materials in mode I fracture with a minimum number of independent parameters. MDPI 2021-10-01 /pmc/articles/PMC8512390/ /pubmed/34641202 http://dx.doi.org/10.3390/polym13193387 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Biswakarma, John J. S. Cruz, Dario A. Bain, Erich D. Dennis, Joseph M. Andzelm, Jan W. Lustig, Steven R. Modeling Brittle Fractures in Epoxy Nanocomposites Using Extended Finite Element and Cohesive Zone Surface Methods |
title | Modeling Brittle Fractures in Epoxy Nanocomposites Using Extended Finite Element and Cohesive Zone Surface Methods |
title_full | Modeling Brittle Fractures in Epoxy Nanocomposites Using Extended Finite Element and Cohesive Zone Surface Methods |
title_fullStr | Modeling Brittle Fractures in Epoxy Nanocomposites Using Extended Finite Element and Cohesive Zone Surface Methods |
title_full_unstemmed | Modeling Brittle Fractures in Epoxy Nanocomposites Using Extended Finite Element and Cohesive Zone Surface Methods |
title_short | Modeling Brittle Fractures in Epoxy Nanocomposites Using Extended Finite Element and Cohesive Zone Surface Methods |
title_sort | modeling brittle fractures in epoxy nanocomposites using extended finite element and cohesive zone surface methods |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512390/ https://www.ncbi.nlm.nih.gov/pubmed/34641202 http://dx.doi.org/10.3390/polym13193387 |
work_keys_str_mv | AT biswakarmajohnjs modelingbrittlefracturesinepoxynanocompositesusingextendedfiniteelementandcohesivezonesurfacemethods AT cruzdarioa modelingbrittlefracturesinepoxynanocompositesusingextendedfiniteelementandcohesivezonesurfacemethods AT bainerichd modelingbrittlefracturesinepoxynanocompositesusingextendedfiniteelementandcohesivezonesurfacemethods AT dennisjosephm modelingbrittlefracturesinepoxynanocompositesusingextendedfiniteelementandcohesivezonesurfacemethods AT andzelmjanw modelingbrittlefracturesinepoxynanocompositesusingextendedfiniteelementandcohesivezonesurfacemethods AT lustigstevenr modelingbrittlefracturesinepoxynanocompositesusingextendedfiniteelementandcohesivezonesurfacemethods |