Cargando…

Modeling Brittle Fractures in Epoxy Nanocomposites Using Extended Finite Element and Cohesive Zone Surface Methods

Linear elastic fracture modeling coupled with empirical material tensile data result in good quantitative agreement with the experimental determination of mode I fracture for both brittle and toughened epoxy nanocomposites. The nanocomposites are comprised of diglycidyl ether of bisphenol A cured wi...

Descripción completa

Detalles Bibliográficos
Autores principales: Biswakarma, John J. S., Cruz, Dario A., Bain, Erich D., Dennis, Joseph M., Andzelm, Jan W., Lustig, Steven R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512390/
https://www.ncbi.nlm.nih.gov/pubmed/34641202
http://dx.doi.org/10.3390/polym13193387
_version_ 1784582979446636544
author Biswakarma, John J. S.
Cruz, Dario A.
Bain, Erich D.
Dennis, Joseph M.
Andzelm, Jan W.
Lustig, Steven R.
author_facet Biswakarma, John J. S.
Cruz, Dario A.
Bain, Erich D.
Dennis, Joseph M.
Andzelm, Jan W.
Lustig, Steven R.
author_sort Biswakarma, John J. S.
collection PubMed
description Linear elastic fracture modeling coupled with empirical material tensile data result in good quantitative agreement with the experimental determination of mode I fracture for both brittle and toughened epoxy nanocomposites. The nanocomposites are comprised of diglycidyl ether of bisphenol A cured with Jeffamine D-230 and some were filled with core-shell rubber nanoparticles of varying concentrations. The quasi-static single-edge notched bending (SENB) test is modeled using both the surface-based cohesive zone (CZS) and extended finite element methods (XFEM) implemented in the Abaqus software. For each material considered, the critical load predicted by the simulated SENB test is used to calculate the mode I fracture toughness. Damage initiates in these models when nodes at the simulated crack tip attain the experimentally measured yield stress. Prediction of fracture processes using a generalized truncated linear traction–separation law (TSL) was significantly improved by considering the case of a linear softening function. There are no adjustable parameters in the XFEM model. The CZS model requires only optimization of the element displacement at the fracture parameter. Thus, these continuum methods describe these materials in mode I fracture with a minimum number of independent parameters.
format Online
Article
Text
id pubmed-8512390
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-85123902021-10-14 Modeling Brittle Fractures in Epoxy Nanocomposites Using Extended Finite Element and Cohesive Zone Surface Methods Biswakarma, John J. S. Cruz, Dario A. Bain, Erich D. Dennis, Joseph M. Andzelm, Jan W. Lustig, Steven R. Polymers (Basel) Article Linear elastic fracture modeling coupled with empirical material tensile data result in good quantitative agreement with the experimental determination of mode I fracture for both brittle and toughened epoxy nanocomposites. The nanocomposites are comprised of diglycidyl ether of bisphenol A cured with Jeffamine D-230 and some were filled with core-shell rubber nanoparticles of varying concentrations. The quasi-static single-edge notched bending (SENB) test is modeled using both the surface-based cohesive zone (CZS) and extended finite element methods (XFEM) implemented in the Abaqus software. For each material considered, the critical load predicted by the simulated SENB test is used to calculate the mode I fracture toughness. Damage initiates in these models when nodes at the simulated crack tip attain the experimentally measured yield stress. Prediction of fracture processes using a generalized truncated linear traction–separation law (TSL) was significantly improved by considering the case of a linear softening function. There are no adjustable parameters in the XFEM model. The CZS model requires only optimization of the element displacement at the fracture parameter. Thus, these continuum methods describe these materials in mode I fracture with a minimum number of independent parameters. MDPI 2021-10-01 /pmc/articles/PMC8512390/ /pubmed/34641202 http://dx.doi.org/10.3390/polym13193387 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Biswakarma, John J. S.
Cruz, Dario A.
Bain, Erich D.
Dennis, Joseph M.
Andzelm, Jan W.
Lustig, Steven R.
Modeling Brittle Fractures in Epoxy Nanocomposites Using Extended Finite Element and Cohesive Zone Surface Methods
title Modeling Brittle Fractures in Epoxy Nanocomposites Using Extended Finite Element and Cohesive Zone Surface Methods
title_full Modeling Brittle Fractures in Epoxy Nanocomposites Using Extended Finite Element and Cohesive Zone Surface Methods
title_fullStr Modeling Brittle Fractures in Epoxy Nanocomposites Using Extended Finite Element and Cohesive Zone Surface Methods
title_full_unstemmed Modeling Brittle Fractures in Epoxy Nanocomposites Using Extended Finite Element and Cohesive Zone Surface Methods
title_short Modeling Brittle Fractures in Epoxy Nanocomposites Using Extended Finite Element and Cohesive Zone Surface Methods
title_sort modeling brittle fractures in epoxy nanocomposites using extended finite element and cohesive zone surface methods
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512390/
https://www.ncbi.nlm.nih.gov/pubmed/34641202
http://dx.doi.org/10.3390/polym13193387
work_keys_str_mv AT biswakarmajohnjs modelingbrittlefracturesinepoxynanocompositesusingextendedfiniteelementandcohesivezonesurfacemethods
AT cruzdarioa modelingbrittlefracturesinepoxynanocompositesusingextendedfiniteelementandcohesivezonesurfacemethods
AT bainerichd modelingbrittlefracturesinepoxynanocompositesusingextendedfiniteelementandcohesivezonesurfacemethods
AT dennisjosephm modelingbrittlefracturesinepoxynanocompositesusingextendedfiniteelementandcohesivezonesurfacemethods
AT andzelmjanw modelingbrittlefracturesinepoxynanocompositesusingextendedfiniteelementandcohesivezonesurfacemethods
AT lustigstevenr modelingbrittlefracturesinepoxynanocompositesusingextendedfiniteelementandcohesivezonesurfacemethods