Cargando…

Solubilization Behavior of Homopolymer in Its Blend with the Block Copolymer Displaying the Feature of Lower Critical Ordering Transition

Blending with homopolymer offers a facile approach for tuning the microdomain morphology of block copolymer, provided that the homopolymer chains are uniformly solubilized in the corresponding microdomain to swell the junction point separation. Here we studied the solubilization behavior of poly(4-v...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Yu-Hsuan, Shiu, Chang-Cheng, Chen, Tien-Lin, Chen, Hsin-Lung, Tsai, Jing-Cherng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512391/
https://www.ncbi.nlm.nih.gov/pubmed/34641230
http://dx.doi.org/10.3390/polym13193415
Descripción
Sumario:Blending with homopolymer offers a facile approach for tuning the microdomain morphology of block copolymer, provided that the homopolymer chains are uniformly solubilized in the corresponding microdomain to swell the junction point separation. Here we studied the solubilization behavior of poly(4-vinyl pyridine) homopolymer (h-P4VP) in the lamellar microdomain formed by its blends with a poly(ethylene oxide)-block-poly(4-vinyl pyridine) (PEO-b-P4VP) showing the feature of lower critical ordering transition (LCOT) in terms of weaker segregation strength at lower temperature. We revealed that, while the conventional criterion of homopolymer-to-block molecular weight ratio for attaining uniform solubilization was applicable to LCOT blend, there was an excess swelling of junction point separation upon the addition of homopolymer, leading to a decrease of interdomain distance with increasing homopolymer composition. This anomalous phenomenon was attributed to the reduction of interfacial free energy due to the incorporation of P4VP homopolymer into the microdomain interface.