Cargando…

Measurement of Axial Strain of Geogrid by Optical Sensors

In recent years, the technology of optical fibers has rapidly gained ground in many areas of science and industry, including the construction industry. In this article, the technology of optical fibers based on a fiber Bragg grating (FBG) was used to determine tensile forces acting in a basal reinfo...

Descripción completa

Detalles Bibliográficos
Autores principales: Drusa, Marian, Kais, Ladislav, Dubovan, Jozef, Markovic, Miroslav, Bahleda, Frantisek, Mecar, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512542/
https://www.ncbi.nlm.nih.gov/pubmed/34640725
http://dx.doi.org/10.3390/s21196404
Descripción
Sumario:In recent years, the technology of optical fibers has rapidly gained ground in many areas of science and industry, including the construction industry. In this article, the technology of optical fibers based on a fiber Bragg grating (FBG) was used to determine tensile forces acting in a basal reinforcement of a scaled down physical model, which included piled embankment and basal reinforcement. Installing FBG sensors on the geogrid made monitoring of axial strains possible, thus allowing determination of the behavior of the basal reinforcement of the piled embankment. On the basis of three tests performed on the physical model, numerical model calibration with the physical model was carried out using the software PLAXIS 3D Tunnel 2.4. The results showed accurate predictions, especially for the low and middle part of the measured deformations where the numerical analysis proposed a solution that can be considered as safe. Installing FBG sensors on biaxial geogrids was a bold idea that was not easy to implement. However, other possibilities have been successfully tested, such as high-frequency measurements of the response of reinforced soil structure under dynamic loading.