Cargando…
MetaClass, a Comprehensive Classification System for Predicting the Occurrence of Metabolic Reactions Based on the MetaQSAR Database
(1) Background: Machine learning algorithms are finding fruitful applications in predicting the ADME profile of new molecules, with a particular focus on metabolism predictions. However, the development of comprehensive metabolism predictors is hampered by the lack of highly accurate metabolic resou...
Autores principales: | Mazzolari, Angelica, Scaccabarozzi, Alice, Vistoli, Giulio, Pedretti, Alessandro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512547/ https://www.ncbi.nlm.nih.gov/pubmed/34641400 http://dx.doi.org/10.3390/molecules26195857 |
Ejemplares similares
-
MetaSpot: A General Approach for Recognizing the Reactive Atoms Undergoing Metabolic Reactions Based on the MetaQSAR Database
por: Mazzolari, Angelica, et al.
Publicado: (2023) -
MetaTREE, a Novel Database Focused on Metabolic Trees, Predicts an Important Detoxification Mechanism: The Glutathione Conjugation
por: Mazzolari, Angelica, et al.
Publicado: (2021) -
Prediction of the Formation of Reactive Metabolites by A Novel Classifier Approach Based on Enrichment Factor Optimization (EFO) as Implemented in the VEGA Program
por: Mazzolari, Angelica, et al.
Publicado: (2018) -
Rescoring and Linearly Combining: A Highly Effective Consensus Strategy for Virtual Screening Campaigns
por: Pedretti, Alessandro, et al.
Publicado: (2019) -
Obesity and Type 2 Diabetes: Adiposopathy as a Triggering Factor and Therapeutic Options
por: Artasensi, Angelica, et al.
Publicado: (2023)