Cargando…
Data-Efficient Sensor Upgrade Path Using Knowledge Distillation
Deep neural networks have achieved state-of-the-art performance in image classification. Due to this success, deep learning is now also being applied to other data modalities such as multispectral images, lidar and radar data. However, successfully training a deep neural network requires a large red...
Autores principales: | Van Molle, Pieter, De Boom, Cedric, Verbelen, Tim, Vankeirsbilck, Bert, De Vylder, Jonas, Diricx, Bart, Simoens, Pieter, Dhoedt, Bart |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512581/ https://www.ncbi.nlm.nih.gov/pubmed/34640843 http://dx.doi.org/10.3390/s21196523 |
Ejemplares similares
-
Learning Generative State Space Models for Active Inference
por: Çatal, Ozan, et al.
Publicado: (2020) -
Model Reduction Through Progressive Latent Space Pruning in Deep Active Inference
por: Wauthier, Samuel T., et al.
Publicado: (2022) -
Active Vision for Robot Manipulators Using the Free Energy Principle
por: Van de Maele, Toon, et al.
Publicado: (2021) -
The Free Energy Principle for Perception and Action: A Deep Learning Perspective
por: Mazzaglia, Pietro, et al.
Publicado: (2022) -
Embodied Object Representation Learning and Recognition
por: Van de Maele, Toon, et al.
Publicado: (2022)